【Koopman最优控制】Koopman不变子空间与非线性动态系统的有限线性表示(用于控制)研究(Python代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献 

🌈4 Python代码、文章下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

摘要
在本研究中,我们通过将Koopman算子限制在由特殊选择的可观测函数张成的不变子空间内,探索非线性动态系统的有限维线性表示。Koopman算子是一个无限维线性算子,用于演化动态系统状态的函数 [1, Koopman 1931]。Koopman展开中的主导项通常通过动态模态分解(DMD)计算。DMD使用状态变量的线性测量,最近的研究表明,这种方法对于非线性系统可能过于局限 [2, Williams等人,2015]。选择合适的非线性可观测函数以形成不变子空间,从而获得有用的线性降阶模型(特别是用于控制的模型),仍然是一个开放性挑战。
在这里,我们研究了用于Koopman分析的可观测函数选择,以使非线性问题能够使用最优线性控制技术。首先,为了在系统状态中引入代价(如线性二次调节器[LQR]控制),将这些状态包含在可观测子空间中是有帮助的,就像在DMD中一样。然而,我们发现这只有在系统存在单个孤立固定点时才可能实现,因为具有多个固定点或更复杂吸引子的系统在全局拓扑上不能与有限维线性系统共轭,也无法通过包含状态的有限维线性Koopman子空间来表示。
随后,我们提出了一种数据驱动策略,通过利用一种新算法来确定动态系统中的相关项,从而识别Koopman分析中的相关可观测函数。该算法通过在非线性函数空间中对数据进行ℓ₁正则化回归来实现 [3, Brunton等人,2015];我们还展示了该算法与DMD之间的关系。最后,我们通过线性最优控制技术,展示了非线性可观测子空间在设计完全非线性系统的Koopman算子最优控制律中的有效性。
关键词——动态系统,Koopman分析,希尔伯特空间,可观测函数,动态模态分解,系统辨识,最优控制,Koopman最优控制。

**1 引言**  
Koopman谱分析为动态系统提供了一种算子理论的视角,这补充了更为传统的几何 [4] 和概率视角。在20世纪30年代初 [1, 5],B. O. Koopman表明,与哈密顿流相关的非线性动态系统可以通过作用于可观测函数希尔伯特空间的无限维线性算子进行分析。对于哈密顿流体,Koopman算子是酉的,这意味着任意两个可观测函数的内积在该算子作用下保持不变。酉性是一个熟悉的概念,因为离散傅里叶变换(DFT)和本征正交分解(POD) [6] 都提供了酉坐标变换。在原始论文 [1] 中,Koopman将Koopman特征值谱与守恒量、可积性和遍历性联系起来。最近的研究表明,Koopman特征函数的水平集构成了动态系统状态空间的不变划分 [7];特别是,Koopman算子的特征函数可用于分析遍历划分 [8, 9]。Koopman分析还被证明可以将Hartman-Grobman定理推广到稳定或不稳定平衡点或周期轨道的整个吸引域 [10]。关于Koopman分析的更多信息,Mezic等人 [11, 12] 的多篇深入综述文章非常出色。  
Koopman分析一直是近年来基于数据驱动的方法的核心,这些方法旨在表征复杂系统,其研究始于Mezic和Banaszuk [13] 以及Mezic [14] 的工作。目前,人们对于获得能够传播原始非线性动态的线性Koopman算子的有限秩近似非常感兴趣。这在非线性系统的潜在控制方面尤其具有前景 [15]。然而,引入Koopman算子后,我们将非线性动态转换为无限维线性动态,这带来了新的挑战。Koopman算子的有限维线性近似可能有助于建模吸引子上的动态,而那些显式推进状态的近似对于控制也可能是有用的。任何一组Koopman特征函数都会形成一个Koopman不变子空间,从而得到一个精确的有限维线性模型。不幸的是,许多动态系统并不存在一个既包含状态又张成Koopman不变子空间的有限维子空间;实际上,这仅适用于具有孤立固定点的系统。虽然有可能从Koopman特征函数中恢复状态,但确定特征函数并求解状态可能都具有挑战性。  
动态模态分解(DMD)最初在流体动力学领域被提出 [16, 17, 18, 19],为Koopman模态分解提供了一个实用的数值框架。DMD隐式地使用线性可观测函数,例如通过粒子图像测速(PIV)直接测量速度场。换句话说,可观测函数是流体流动状态的恒等映射。这一组线性可观测量过于有限,无法描述流体或其他非线性系统中观察到的丰富动态。最近,DMD被扩展以包含更丰富的非线性可观测函数集,从而能够有效分析非线性系统 [2]。由于这种扩展DMD对于高维系统的计算成本极高,因此引入了机器学习中的核技巧,以使扩展DMD的成本与传统DMD相当,同时保留非线性可观测量的优势 [20]。然而,对于给定系统,选择正确的非线性可观测函数,以及它们如何影响Koopman模态分解和降阶的性能,仍然是一个开放性问题。目前,这些可观测函数要么是基于动态方程右侧的信息确定的(例如,已知纳维-斯托克斯方程具有二次非线性等),要么是通过在希尔伯特空间的特定基中进行穷举试错来确定的(例如,尝试许多不同的多项式函数)。  
在本研究中,我们探索识别张成希尔伯特空间有限维子空间的可观测函数,这些子空间在Koopman算子作用下保持不变(即,由Koopman算子的特征函数张成的Koopman不变子空间)。当这个子空间包含原始状态时,我们在这个子空间上得到了一个有限维线性动态系统,它也直接推进原始状态。我们使用一种新算法——非线性动态的稀疏识别(SINDy) [3],首先识别非线性系统的右侧动态。接下来,我们选择可观测函数,使得这些动态包含在张成空间内。最后,对于某些具有孤立固定点的动态系统,我们构建了一个也直接推进状态的有限维Koopman算子。对于本文所展示的例子,这一过程与Carleman线性化 [21, 22, 23] 密切相关,后者在非线性控制方面有扩展 [24, 25, 26]。此后,可以利用线性最优控制理论的技术,为非线性固定点开发非线性Koopman算子最优控制(KOOC)律。

**6 讨论**  
在本文中,我们研究了一种特殊的Koopman可观测函数选择,这些函数形成了一个有限维的希尔伯特子空间,该子空间包含状态变量,并且在Koopman算子作用下保持不变。任意一组Koopman特征函数(即特征可观测量)可以形成这样的Koopman不变子空间。这些Koopman特征函数可能极具价值,为给定的非线性动态系统提供了内在坐标。此外,给定这样一个Koopman不变子空间,限制在该子空间上的Koopman算子可以产生一个有限维线性动态系统,用于随时间演化这些可观测量。  
然而,如何从数据或控制方程中识别相关的Koopman特征函数,以及如何将这些坐标反演以获取底层状态变量的进展信息,这些问题并不总是清晰的。此外,在许多控制场景中,控制目标是直接定义在状态变量上的;例如在线性二次调节器(LQR)控制中就是如此。因此,定义一个包含原始状态变量作为可观测量的Koopman不变子空间仍然具有重要意义。  
我们证明了对于一大类具有单个孤立固定点的非线性系统,可以得到一个包含原始状态变量的Koopman不变子空间。此外,我们提出了一种数据驱动的技术,利用最近的一种技术来识别非线性函数空间中的非线性动态系统,这种方法使用稀疏回归来识别相关的Koopman可观测函数;该算法被称为非线性动态的稀疏识别(SINDy)。我们表明,定义这个Koopman不变子空间的特征可观测量可以通过求解限制在子空间上的Koopman算子的左特征向量来获得。最后,我们证明了在这个Koopman不变子空间上定义的有限维线性Koopman算子可以利用线性控制理论的技术开发Koopman算子最优控制(KOOC)律。特别是,我们利用Koopman线性系统开发了一个LQR控制器,但保留了定义在原始状态上的代价函数。得到的控制律可以被视为在状态变量上诱导了一个非线性控制律,其性能显著优于基于线性化的标准LQR,代价降低了三倍。这极具前景,可能会为在固定点附近具有标准形展开的系统带来显著改进的控制律 [4]。这些展开通常用于天体物理问题中,以计算围绕固定点的轨道 [41];例如,詹姆斯·韦伯太空望远镜将围绕日地L2拉格朗日点运行 [42]。  
正如数学中许多有趣问题的情况一样,对一个问题的深入理解会引发一系列其他未解决的问题。例如,对能够将状态变量作为可观测量的Koopman不变子空间的非线性系统的完整分类仍然是一个开放且有趣的问题。然而,可以明确的是,具有多个固定点、周期轨道或更复杂吸引子的系统无法明确地将状态变量作为可观测量纳入有限维Koopman不变子空间。在这种情况下,另一个未解决的问题是如何选择可观测量坐标,使得线性Koopman动态的有限秩截断不仅能够重建现有数据,还能用于未来状态的预测和控制。最后,还需要进一步研究Koopman算子最优控制律是否真正最优,即它们是否在所有可能的非线性控制律中最小化代价函数。  
围绕Koopman分析和动态模态分解(DMD)的大部分兴趣都集中在获得非线性动态的有限维线性表达式上。事实上,任意一组Koopman特征函数都可以张成一个不变子空间,在该子空间中可以得到一个精确且封闭的有限维截断,尽管找到这些非线性Koopman特征可观测量是具有挑战性的。此外,Koopman不变子空间可能无法提供足够的信息来传播底层状态,这对于评估最优控制律中的代价函数是有用的。Koopman特征函数提供了有关原始系统的大量信息,包括对不变集(如稳定流形和不稳定流形)的描述,这些信息可能没有简单的封闭形式表示,而需要从数据中进行近似。有方法利用集合导向方法 [45] 来识别几乎不变的集合和连贯结构 [43, 44]。相关的Ulam-Galerkin方法已被用于近似Perron-Frobenius算子的特征值和特征函数 [46]。  
为应对这些挑战,从数据中探索Koopman算子的有限维线性近似已被广泛研究,并且在许多情况下具有价值,特别是在提取模态连贯结构上的动态方面。然而,我们已经表明,对于一个动态系统来说,明确地将状态变量纳入有限维Koopman不变子空间是非常罕见的,因此,只有具有单个孤立固定点的系统才存在用于传播状态动态的精确线性模型。这意味着对于具有多个固定点或更一般吸引子的非线性现象,线性Koopman模型的近似截断应谨慎用于未来状态的预测,尤其是对于吸引子外的瞬态,以及用于控制律的设计。在非线性系统的Koopman分析中,没有免费的午餐,因为我们用有限维非线性动态换取了无限维线性动态,同时带来了全新的挑战。

📚2 运行结果

部分代码:

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Python代码、文章下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值