题目描述
给你一个 无重复元素 的整数数组 candidates
和一个目标整数 target
,找出 candidates
中可以使数字和为目标数 target
的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates
中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target
的不同组合数少于 150
个。
样例输入
示例 1:
输入: candidates = [2,3,6,7],target = 7 输出:[[2,2,3],[7]] 解释: 2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。 7 也是一个候选, 7 = 7 。 仅有这两种组合。
示例 2:
输入: candidates = [2,3,5],target = 8 输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2],target = 1 输出: []
提示:
1 <= candidates.length <= 30
2 <= candidates[i] <= 40
candidates
的所有元素 互不相同1 <= target <= 40
本题解法类似于组合总和III,详解组合总和III(回溯)-CSDN博客
区别在于
- 本题没有递归深度的限制
- 本题要求所取元素可重复,因此每次递归时控制的索引都从当前i开始,而不是i+1
题解代码
class Solution {
private:
vector<int> path;
vector<vector<int>> res;
void backing(vector<int>& candidates,int sum,int target,int index)
{
if(sum>target) return;
if(sum==target)
{
res.emplace_back(path);
return;
}
for(int i=index;i<candidates.size();i++)
{
sum+=candidates[i];
path.emplace_back(candidates[i]);
backing(candidates,sum,target,i);
path.pop_back();
sum-=candidates[i];
}
}
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
backing(candidates,0,target,0);
return res;
}
};