数据结构~七大排序算法(Java实现)

目录

插入排序

直接插入排序

希尔排序

选择排序

直接选择排序

堆排序

交换排序

冒泡排序

快速排序

递归实现

优化版本

归并排序 


插入排序

直接插入排序

public class MySort {
    public static void insertSort(int[] array) {
        for (int i = 1; i < array.length; i++) {
            int j = i - 1;
            int tmp = array[i];
            for (; j >= 0; j--) {
                if (tmp < array[j]) {
                    array[j + 1] = array[j];
                } else {
                    break;
                }
            }
            array[j + 1] = tmp;
        }
    }
}

· 时间复杂度:

        最好情况下O(n),即数组有序的情况

        最坏情况下O(n^2),即数组逆序的情况

· 空间复杂度:O(1)

· 稳定性: 稳定的排序算法

希尔排序

public class MySort {
    public static void shellSort(int[] array) {
        for (int gap = array.length / 2; gap > 1; gap /= 2) {
            shell(array, gap);
        }
        shell(array, 1);
    }

    private static void shell(int[] array, int gap) {
        for (int i = gap; i < array.length; i++) {
            int j = i - gap;
            int tmp = array[i];
            for (; j >= 0; j -= gap) {
                if (tmp < array[j]) {
                    array[j + gap] = array[j];
                } else {
                    break;
                }
            }
            array[j + gap] = tmp;
        }
    }
}

· 时间复杂度:O(n^1.3)

· 空间复杂度:O(1)

· 稳定性: 不稳定的排序算法

选择排序

直接选择排序

public class MySort {
    public static void selectSort(int[] array) {
        for (int i = 0; i < array.length; i++) {
            int minIndex = i;
            for (int j = i + 1; j < array.length; j++) {
                    if (array[minIndex] > array[j]) {
                        minIndex = j;
                    }
            }
            swap(array, minIndex, i);
        }
    }

    private static void swap(int[] array, int i, int j) {
        int tmp = array[i];
        array[i] = array[j];
        array[j] = tmp;
    }
}

· 时间复杂度:O(n^2)

· 空间复杂度:O(1)

· 稳定性:不稳定的排序算法 

堆排序

要排升序时,建立大根堆,排降序时,建立小根堆

public class MySort {
    public static void heapSort(int[] array) {
        //1、建立大根堆  时间复杂度:O(n)
        createHeap(array);
        //2、排序  时间复杂度:O(n*logn)
        int end = array.length - 1;
        while (end > 0) {
            swap(array, 0, end);
            shiftDown(array, 0, end);
            end--;
        }
    }
    private static void createHeap(int[] array) {
        for (int parent = (array.length-1-1) / 2; parent >= 0; parent--) {
            shiftDown(array, parent, array.length);
        }
    }
    private static void shiftDown(int[] array, int parent, int len) {
        int child = 2 * parent + 1;
        while (child < len) {
            if (child+1 < len && array[child] < array[child+1]) {
                child++;//他一定保存的是左右孩子的最大值的下标
            }
            if (array[child] > array[parent]) {
                swap(array, child, parent);
                parent = child;
                child = 2*parent + 1;
            } else {
                break;
            }
        }
    }
    private static void swap(int[] array, int i, int j) {
        int tmp = array[i];
        array[i] = array[j];
        array[j] = tmp;
    }
}

· 时间复杂度:O(n*logn)  和数据是否有序无关

· 空间复杂度:O(1)

· 稳定性:不稳定的排序算法 

交换排序

冒泡排序

public class MySort {
    public static void bubbleSort(int[] array) {
        for (int i = 0; i < array.length; i++) {
            boolean flag = false;
            for (int j = 0; j < array.length - i - 1; j++) {
                if (array[j + 1] < array[j]) {
                    swap(array, j + 1, j);
                    flag = true;
                }
            }
            if (flag == false) {
                return;
            }
        }
    }
    private static void swap(int[] array, int i, int j) {
        int tmp = array[i];
        array[i] = array[j];
        array[j] = tmp;
    }
}

· 时间复杂度:O(n^2),优化后的冒泡排序时间复杂度最好可以到O(n)

· 空间复杂度:O(1)

· 稳定性:稳定的排序算法 

快速排序

· 时间复杂度:

        最好情况下:O(n*logn),待排序列尽量均匀的分割

        最坏情况下:O(n^2),待排序列正序或逆序

· 空间复杂度:

        最好情况下:O(logn)

        最坏情况下:O(n)

· 稳定性:不稳定的排序算法 

递归实现

public class MySort {
    public static void quickSort(int[] array) {
        quick(array, 0, array.length - 1);
    }

    private static void quick(int[] array, int start, int end) {
        if (start >= end) {
            return;
        }
        int pivot = partition(array, start, end);

        quick(array, start, pivot - 1);
        quick(array, pivot + 1, end);
    }

    private static int partition(int[] array, int left, int right) {
        int tmp = array[left];
        while (left < right) {
            while (left < right && array[right] >= tmp) {
                right--;
            }
            array[left] = array[right];
            while (left < right && array[left] <= tmp) {
                left++;
            }
            array[right] = array[left];
        }
        array[left] = tmp;
        return left;
    }
}

优化版本

对于快速排序的优化,利用三数取中法选取key值,当递归到小的区间时,采用直接插入排序

public class MyQuickSort {
    private static final int INSERT_SIZE = 100;

    private static void quickSort(int[] array) {
        quick(array, 0, array.length - 1);
    }
    private static void quick(int[] array, int start, int end) {
        if (start >= end) {
            return;
        }
        if (end - start + 1 <= INSERT_SIZE) {
            insertSort(array, start, end);
            return;
        }
        int index = threeMid(array, start, end);
        swap(array, start, index);
        int pivot = partition(array, start, end);
        quick(array, start, pivot - 1);
        quick(array, pivot + 1, end);
    }
    /**
     * 针对快排的优化:key值根据三数取中法获得
     */
    private static int threeMid(int[] array, int left, int right) {
        int mid = (left + right) >>> 1;
        if (array[left] > array[right]) {
            if (array[mid] > array[left]) {
                return left;
            } else if (array[mid] < array[right]) {
                return right;
            } else {
                return mid;
            }
        } else {
            if (array[mid] > array[right]) {
                return right;
            } else if (array[mid] < array[left]) {
                return left;
            } else {
                return mid;
            }
        }
    }
    /**
     * 针对快排的优化:当递归到小的区间时,快排转为插入排序
     */
    private static void insertSort(int[] array, int start, int end) {
        for (int i = start + 1; i < end + 1; i++) {
            int j = i - 1;
            int tmp = array[i];
            for (; j >= start; j--) {
                if (tmp < array[j]) {
                    array[j + 1] = array[j];
                } else {
                    break;
                }
            }
            array[j + 1] = tmp;
        }
    }
    private static int partition(int[] array, int left, int right) {
        int tmp = array[left];
        while (left < right) {
            while (left < right && array[right] > tmp) {
                right--;
            }
            array[left] = array[right];
            while (left < right && array[left] < tmp) {
                left++;
            }
            array[right] = array[left];
        }
        array[left] = tmp;
        return left;
    }
    private static void swap(int[] array, int i, int j) {
        int tmp = array[i];
        array[i] = array[j];
        array[j] = tmp;
    }
}

归并排序 

public class MySort {
    public static void mergeSort(int[] array) {
        mergeSortFunction(array, 0, array.length - 1);
    }
    private static void mergeSortFunction(int[] array, int low, int high) {
        if (low >= high) {
            return;
        }
        int mid = (low + high) >>> 1;
        mergeSortFunction(array, low, mid);
        mergeSortFunction(array, mid + 1, high);
        merge(array, low, high, mid);
    }
    private static void merge(int[] array, int low, int high, int mid) {
        int[] tmp = new int[high - low + 1];
        int k = 0;
        int start1 = low;
        int end1 = mid;
        int start2 = mid + 1;
        int end2 = high;
        while (start1 <= end1 && start2 <= end2) {
            if (array[start1] < array[start2]) {
                tmp[k++] = array[start1++];
            } else {
                tmp[k++] = array[start2++];
            }
        }
        while (start1 <= end1) {
            tmp[k++] = array[start1++];
        }
        while (start2 <= end2) {
            tmp[k++] = array[start2++];
        }
        for (int i = 0; i < k; i++) {
            array[i + low] = tmp[i];
        }
    }

· 时间复杂度:O(n*logn),不论有序或无序都是O(n*logn)

· 空间复杂度:O(n)

· 稳定性: 稳定的排序算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Li_yizYa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值