目录
插入排序
直接插入排序
public class MySort {
public static void insertSort(int[] array) {
for (int i = 1; i < array.length; i++) {
int j = i - 1;
int tmp = array[i];
for (; j >= 0; j--) {
if (tmp < array[j]) {
array[j + 1] = array[j];
} else {
break;
}
}
array[j + 1] = tmp;
}
}
}
· 时间复杂度:
最好情况下O(n),即数组有序的情况
最坏情况下O(n^2),即数组逆序的情况
· 空间复杂度:O(1)
· 稳定性: 稳定的排序算法
希尔排序
public class MySort {
public static void shellSort(int[] array) {
for (int gap = array.length / 2; gap > 1; gap /= 2) {
shell(array, gap);
}
shell(array, 1);
}
private static void shell(int[] array, int gap) {
for (int i = gap; i < array.length; i++) {
int j = i - gap;
int tmp = array[i];
for (; j >= 0; j -= gap) {
if (tmp < array[j]) {
array[j + gap] = array[j];
} else {
break;
}
}
array[j + gap] = tmp;
}
}
}
· 时间复杂度:O(n^1.3)
· 空间复杂度:O(1)
· 稳定性: 不稳定的排序算法
选择排序
直接选择排序
public class MySort {
public static void selectSort(int[] array) {
for (int i = 0; i < array.length; i++) {
int minIndex = i;
for (int j = i + 1; j < array.length; j++) {
if (array[minIndex] > array[j]) {
minIndex = j;
}
}
swap(array, minIndex, i);
}
}
private static void swap(int[] array, int i, int j) {
int tmp = array[i];
array[i] = array[j];
array[j] = tmp;
}
}
· 时间复杂度:O(n^2)
· 空间复杂度:O(1)
· 稳定性:不稳定的排序算法
堆排序
要排升序时,建立大根堆,排降序时,建立小根堆
public class MySort {
public static void heapSort(int[] array) {
//1、建立大根堆 时间复杂度:O(n)
createHeap(array);
//2、排序 时间复杂度:O(n*logn)
int end = array.length - 1;
while (end > 0) {
swap(array, 0, end);
shiftDown(array, 0, end);
end--;
}
}
private static void createHeap(int[] array) {
for (int parent = (array.length-1-1) / 2; parent >= 0; parent--) {
shiftDown(array, parent, array.length);
}
}
private static void shiftDown(int[] array, int parent, int len) {
int child = 2 * parent + 1;
while (child < len) {
if (child+1 < len && array[child] < array[child+1]) {
child++;//他一定保存的是左右孩子的最大值的下标
}
if (array[child] > array[parent]) {
swap(array, child, parent);
parent = child;
child = 2*parent + 1;
} else {
break;
}
}
}
private static void swap(int[] array, int i, int j) {
int tmp = array[i];
array[i] = array[j];
array[j] = tmp;
}
}
· 时间复杂度:O(n*logn) 和数据是否有序无关
· 空间复杂度:O(1)
· 稳定性:不稳定的排序算法
交换排序
冒泡排序
public class MySort {
public static void bubbleSort(int[] array) {
for (int i = 0; i < array.length; i++) {
boolean flag = false;
for (int j = 0; j < array.length - i - 1; j++) {
if (array[j + 1] < array[j]) {
swap(array, j + 1, j);
flag = true;
}
}
if (flag == false) {
return;
}
}
}
private static void swap(int[] array, int i, int j) {
int tmp = array[i];
array[i] = array[j];
array[j] = tmp;
}
}
· 时间复杂度:O(n^2),优化后的冒泡排序时间复杂度最好可以到O(n)
· 空间复杂度:O(1)
· 稳定性:稳定的排序算法
快速排序
· 时间复杂度:
最好情况下:O(n*logn),待排序列尽量均匀的分割
最坏情况下:O(n^2),待排序列正序或逆序
· 空间复杂度:
最好情况下:O(logn)
最坏情况下:O(n)
· 稳定性:不稳定的排序算法
递归实现
public class MySort {
public static void quickSort(int[] array) {
quick(array, 0, array.length - 1);
}
private static void quick(int[] array, int start, int end) {
if (start >= end) {
return;
}
int pivot = partition(array, start, end);
quick(array, start, pivot - 1);
quick(array, pivot + 1, end);
}
private static int partition(int[] array, int left, int right) {
int tmp = array[left];
while (left < right) {
while (left < right && array[right] >= tmp) {
right--;
}
array[left] = array[right];
while (left < right && array[left] <= tmp) {
left++;
}
array[right] = array[left];
}
array[left] = tmp;
return left;
}
}
优化版本
对于快速排序的优化,利用三数取中法选取key值,当递归到小的区间时,采用直接插入排序
public class MyQuickSort {
private static final int INSERT_SIZE = 100;
private static void quickSort(int[] array) {
quick(array, 0, array.length - 1);
}
private static void quick(int[] array, int start, int end) {
if (start >= end) {
return;
}
if (end - start + 1 <= INSERT_SIZE) {
insertSort(array, start, end);
return;
}
int index = threeMid(array, start, end);
swap(array, start, index);
int pivot = partition(array, start, end);
quick(array, start, pivot - 1);
quick(array, pivot + 1, end);
}
/**
* 针对快排的优化:key值根据三数取中法获得
*/
private static int threeMid(int[] array, int left, int right) {
int mid = (left + right) >>> 1;
if (array[left] > array[right]) {
if (array[mid] > array[left]) {
return left;
} else if (array[mid] < array[right]) {
return right;
} else {
return mid;
}
} else {
if (array[mid] > array[right]) {
return right;
} else if (array[mid] < array[left]) {
return left;
} else {
return mid;
}
}
}
/**
* 针对快排的优化:当递归到小的区间时,快排转为插入排序
*/
private static void insertSort(int[] array, int start, int end) {
for (int i = start + 1; i < end + 1; i++) {
int j = i - 1;
int tmp = array[i];
for (; j >= start; j--) {
if (tmp < array[j]) {
array[j + 1] = array[j];
} else {
break;
}
}
array[j + 1] = tmp;
}
}
private static int partition(int[] array, int left, int right) {
int tmp = array[left];
while (left < right) {
while (left < right && array[right] > tmp) {
right--;
}
array[left] = array[right];
while (left < right && array[left] < tmp) {
left++;
}
array[right] = array[left];
}
array[left] = tmp;
return left;
}
private static void swap(int[] array, int i, int j) {
int tmp = array[i];
array[i] = array[j];
array[j] = tmp;
}
}
归并排序
public class MySort {
public static void mergeSort(int[] array) {
mergeSortFunction(array, 0, array.length - 1);
}
private static void mergeSortFunction(int[] array, int low, int high) {
if (low >= high) {
return;
}
int mid = (low + high) >>> 1;
mergeSortFunction(array, low, mid);
mergeSortFunction(array, mid + 1, high);
merge(array, low, high, mid);
}
private static void merge(int[] array, int low, int high, int mid) {
int[] tmp = new int[high - low + 1];
int k = 0;
int start1 = low;
int end1 = mid;
int start2 = mid + 1;
int end2 = high;
while (start1 <= end1 && start2 <= end2) {
if (array[start1] < array[start2]) {
tmp[k++] = array[start1++];
} else {
tmp[k++] = array[start2++];
}
}
while (start1 <= end1) {
tmp[k++] = array[start1++];
}
while (start2 <= end2) {
tmp[k++] = array[start2++];
}
for (int i = 0; i < k; i++) {
array[i + low] = tmp[i];
}
}
· 时间复杂度:O(n*logn),不论有序或无序都是O(n*logn)
· 空间复杂度:O(n)
· 稳定性: 稳定的排序算法