鸢尾花数据集的低维可视化

本文通过PCA和t-SNE方法对鸢尾花数据集进行二维可视化,观察不同类别样本在低维空间的分布。分别使用PCA和t-SNE,并设置了t-SNE的困惑度为5、30、300,分析其对可视化结果的影响。
摘要由CSDN通过智能技术生成

目录

获取鸢尾花数据集,采用PCA的方式进行二维可视化,观察可视化空间不同类别样本的分布情况。

获取鸢尾花数据集,采用t-SNE方法进行二维可视化,设置困惑度的三种不同取值(perplexity=5,30,300)观察可视化空间不同类别样本的分布情况。

参考接口函数:

from sklearn.manifold import TSNEfrom sklearn.decomposition import PCA


  1. 获取鸢尾花数据集,采用PCA的方式进行二维可视化,观察可视化空间不同类别样本的分布情况。

  2. 获取鸢尾花数据集,采用t-SNE方法进行二维可视化,设置困惑度的三种不同取值(perplexity=5,30,300)观察可视化空间不同类别样本的分布情况。

    参考接口函数:

    from sklearn.manifold import TSNE
    from sklearn.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值