LLaVA
文章平均质量分 81
夏洛特兰兰
这个作者很懒,什么都没留下…
展开
-
LLaVA论文(Visual Instruction Tuning)阅读笔记
背景:使用机器生成的指令跟随数据(machine-generated instruction-following data)对大语言模型(LLM)进行指令调整可以增强它的零样本能力。本文旨在将这种思想扩展到多模态领域。本文的贡献:展示了第一个基于生成多模态指令跟随数据集。模型。LLaVA模型通过连接视觉编码器和语言模型,实现了通用的视觉和语言理解能力。LLaVA具有不错的多模态对话能力,在未见过的图像和指令上有时达到多模态GPT-4的水准(85.1%的相对得分)。原创 2023-12-18 22:53:27 · 3912 阅读 · 1 评论 -
Ubuntu16.04配置Anaconda运行环境
下载成功界面如上所示,接下来启动安装程序,会进入安全协议的浏览,一直回车直到需要回答,输入yes同意条款。接着系统会提示安装位置,记住这个位置,在安装完成后将。进入编辑(插入)模式,将频道信息粘贴到文件中,从anaconda官网下载对应的版本,这里以。(添加玩环境变量记得要输入。使环境变量生效,其他方法同理)在安装好之后会提示是否更新。,可以通过命令行还原。安装情况,如下所示。原创 2023-12-18 22:29:59 · 598 阅读 · 0 评论 -
Ubuntu16.04服务器安装LLaVA对应的CUDA
在根据LLaVA项目说明配置好conda等环境后,安装相关依赖,在测试程序中输出查看相应的CUDA版本。得到的输出结果为,说明对应版本是CUDA 11.7,检查本机CUDA版本(命令如下,得到结果为10.0)。nvcc -V检查后得到的结果是,应该是CUDA版本不够,考虑升级CUDA。原创 2023-12-18 22:36:04 · 1296 阅读 · 0 评论 -
LLaVA项目使用说明(一)运行Demo
根据LLaVA项目配置运行环境及运行Demo时遇到的一些问题。原创 2023-12-18 22:23:40 · 6245 阅读 · 9 评论