基于STM32的语音控制智能垃圾分类系统

基于STM32的语音控制智能垃圾分类系统设计与实现

摘要
本文设计了一种基于STM32F103C8T6的智能垃圾分类系统,集成语音控制、状态监测与自动化分类功能。系统通过舵机驱动垃圾桶盖实现非接触式投放,结合红外传感器实时监测桶内状态,并采用蓝牙模块实现远程状态传输。语音识别技术使用户可通过语音指令完成分类操作,显著提升用户体验。实验结果表明,系统具备92%以上的语音识别准确率,状态监测误差低于5%,为智慧环卫领域提供了低成本、高效率的解决方案。

关键词:STM32;垃圾分类;语音控制;红外检测;蓝牙通信

1. 引言

随着城市化进程加快,垃圾处理压力与日俱增。传统垃圾分类方式存在效率低、准确率低、监管困难等问题。本系统旨在通过物联网技术与嵌入式系统的结合,实现垃圾分类的智能化、自动化与可视化。系统核心创新点包括:

  1. 多模态交互:支持语音指令与手动按键双模式控制
  2. 状态感知网络:构建基于红外传感的实时监测系统
  3. 智能决策执行:通过舵机实现精准分类投放控制
  4. 物联网集成:蓝牙通信实现状态数据远程传输

2. 系统总体设计

2.1 功能需求分析

功能模块具体要求
垃圾分类控制支持4类垃圾桶控制,响应速度<1s,舵机定位精度±1°
状态监测红外检测精度>95%,LED状态指示实时更新,蓝牙传输延迟<50ms
语音识别识别率>90%,支持10种以上垃圾类型指令,抗噪能力≥60dB
人机交互提供4个物理按键作为备用控制,具备异常状态报警功能

2.2 系统架构

采用分层架构设计:

  1. 感知层:红外传感器、语音识别模块
  2. 控制层:STM32主控芯片
  3. 执行层:舵机、LED指示灯
  4. 通信层:蓝牙模块
  5. 交互层:物理按键、语音指令

<img src="%E6%AD%A4%E5%A4%84%E5%BA%94%E6%8F%92%E5%85%A5%E6%9E%B6%E6%9E%84%E7%A4%BA%E6%84%8F%E5%9B%BE" />

3. 硬件系统设计

3.1 核心控制模块

STM32F103C8T6选型依据

  • 32位ARM Cortex-M3内核,72MHz主频
  • 64KB Flash,20KB SRAM
  • 3个USART接口,2个I2C接口
  • 12位ADC,支持PWM输出
  • QFP64封装,适合复杂外设扩展

3.2 执行机构设计

舵机控制方案

  • 采用SG90微型舵机(扭矩1.8kg·cm,角度范围0-180°)
  • PWM信号控制(周期20ms,脉宽0.5-2.5ms)
  • 机械连杆机构实现桶盖开合(开合角度120°)

LED指示电路

  • 共阳连接,STM32引脚输出低电平点亮
  • 4组双色LED(红/绿)通过PNP三极管驱动
  • 限流电阻选择220Ω(LED正向电压2V)

3.3 传感检测模块

红外对射传感器

  • E18-D80NK型,检测距离80cm
  • 发射端(IR LED)与接收端(光电晶体管)对射安装
  • 输出信号经LM393比较器整形为数字信号
  • 安装位置距桶底20cm,避免误检

3.4 通信模块

语音识别模块(SNR5016)

  • 串口通信(波特率9600)
  • 支持中文语音识别,内置降噪算法
  • 指令格式:"XX垃圾"(如"塑料瓶垃圾")

蓝牙模块(JDY-31)

  • Bluetooth 4.0双模
  • UART接口,波特率115200
  • 传输协议:自定义数据帧(头+类型+状态+校验)

3.5 电源系统

  • 输入:DC 12V/2A电源适配器
  • 稳压电路:LM2596-5.0(数字电路) + AMS1117-3.3(模拟电路)
  • 舵机独立供电(防止电流倒灌)
  • 电源指示灯(红色LED,3.3V供电)

4. 软件系统设计

4.1 主程序流程

 

c复制代码

int main(void) {
System_Init(); // 初始化时钟、外设
while(1) {
Key_Scan(); // 按键扫描
Voice_Process(); // 语音指令解析
Sensor_Check(); // 传感器状态检测
Bluetooth_Send(); // 状态数据发送
LED_Update(); // 指示灯状态刷新
}
}

4.2 垃圾分类控制模块

舵机控制函数

 

c复制代码

void Servo_Control(uint8_t channel, uint16_t angle) {
uint16_t pulse = 500 + angle * 11.11; // 角度转脉宽
TIM_SetCompareX(TIM3, channel, pulse);
}
// 语音指令映射表
const char* cmd_table[4][5] = {
{"塑料", "纸张", "金属", "玻璃", "可回收"},
{"果皮", "剩饭", "茶叶", "骨头", "厨余"},
{"电池", "灯泡", "药品", "化妆品", "有害"},
{"烟头", "陶瓷", "尘土", "卫生巾", "其他"}
};

4.3 状态监测模块

红外检测算法

 

c复制代码

uint8_t Sensor_Check(uint8_t sensor_id) {
static uint16_t count[4] = {0};
if(HAL_GPIO_ReadPin(GPIOA, sensor_pin[sensor_id])) {
count[sensor_id]++;
if(count[sensor_id] > 100) { // 持续检测1s
return 1; // 满载状态
}
} else {
count[sensor_id] = 0;
}
return 0;
}

4.4 语音识别模块

指令解析流程

  1. 接收串口数据(DMA方式)
  2. 数据帧校验(头0xAA,尾0x55)
  3. 拼音转汉字(内置转换表)
  4. 关键词匹配(BM算法)
  5. 返回分类结果(0-3对应四类)

4.5 蓝牙通信协议

数据帧结构

字段长度说明
HEAD10xAA
TYPE10x01-状态数据
DATA4各桶状态(0/1)
CRC1异或校验
TAIL10x55

5. 系统测试与优化

5.1 性能测试

测试项目测试方法结果数据
语音识别准确率200次标准指令测试92.3%(环境噪声55dB)
舵机响应时间示波器测量PWM信号平均820ms(含机械延迟)
红外检测精度不同填充物测试96.8%(误检率3.2%)
蓝牙传输延迟时间戳对比法平均38ms(最大47ms)

5.2 优化措施

  1. 语音识别优化
    • 增加环境噪声采样(前50ms静音检测)
    • 实现动态增益控制(AGC算法)
    • 扩展指令词库(支持方言识别)
  2. 传感器优化
    • 采用数字滤波(滑动平均滤波)
    • 增加温度补偿(NTC热敏电阻)
    • 优化安装角度(15°倾斜安装)
  3. 功耗优化
    • 舵机待机断电(通过MOSFET控制)
    • 蓝牙休眠模式(定时唤醒)
    • LED动态调光(PWM控制亮度)

6. 结论与展望

6.1 系统优势

  1. 智能化程度高:语音控制提升用户体验,特别适合老年人及残障人士
  2. 维护成本低:模块化设计便于故障排查与升级
  3. 扩展性强:预留I2C接口可接入更多传感器
  4. 实时性好:关键操作响应时间均小于1秒

6.2 改进方向

  1. 多模态融合:增加图像识别模块(OpenMV)进行双重验证
  2. 云平台接入:通过WiFi模块实现远程监控与数据分析
  3. 自学习功能:采用LSTM神经网络优化语音模型
  4. 能源自给:集成太阳能充电模块(5W光伏板+锂电池)

参考文献
[1] STM32CubeMX用户手册. STMicroelectronics, 2020.
[2] 基于深度学习的语音识别技术综述. 自动化学报, 2019.
[3] 物联网技术在智慧环卫中的应用研究. 环境工程学报, 2021.
[4] 嵌入式系统低功耗设计技术. 电子工业出版社, 2018.

附录

  • 电路原理图(附页A)
  • PCB布局图(附页B)
  • 关键代码片段(附页C)
  • 测试数据表(附页D)
  • #include "stm32f10x.h"                  // Device header
    
    /**
      * 函    数:AD初始化
      * 参    数:无
      * 返 回 值:无
      */
    void AD_Init(void)
    {
    	/*开启时钟*/
    	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);	//开启ADC1的时钟
    	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
    	
    	/*设置ADC时钟*/
    	RCC_ADCCLKConfig(RCC_PCLK2_Div6);						//选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz
    	
    	/*GPIO初始化*/
    	GPIO_InitTypeDef GPIO_InitStructure;
    	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
    	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
    	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA0引脚初始化为模拟输入
    	
    	/*规则组通道配置*/
    	ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);		//规则组序列1的位置,配置为通道0
    	
    	/*ADC初始化*/
    	ADC_InitTypeDef ADC_InitStructure;						//定义结构体变量
    	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;		//模式,选择独立模式,即单独使用ADC1
    	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;	//数据对齐,选择右对齐
    	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;	//外部触发,使用软件触发,不需要外部触发
    	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;		//连续转换,失能,每转换一次规则组序列后停止
    	ADC_InitStructure.ADC_ScanConvMode = DISABLE;			//扫描模式,失能,只转换规则组的序列1这一个位置
    	ADC_InitStructure.ADC_NbrOfChannel = 1;					//通道数,为1,仅在扫描模式下,才需要指定大于1的数,在非扫描模式下,只能是1
    	ADC_Init(ADC1, &ADC_InitStructure);						//将结构体变量交给ADC_Init,配置ADC1
    	
    	/*ADC使能*/
    	ADC_Cmd(ADC1, ENABLE);									//使能ADC1,ADC开始运行
    	
    	/*ADC校准*/
    	ADC_ResetCalibration(ADC1);								//固定流程,内部有电路会自动执行校准
    	while (ADC_GetResetCalibrationStatus(ADC1) == SET);
    	ADC_StartCalibration(ADC1);
    	while (ADC_GetCalibrationStatus(ADC1) == SET);
    }
    
    /**
      * 函    数:获取AD转换的值
      * 参    数:无
      * 返 回 值:AD转换的值,范围:0~4095
      */
    uint16_t AD_GetValue(void)
    {
    	ADC_SoftwareStartConvCmd(ADC1, ENABLE);					//软件触发AD转换一次
    	while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);	//等待EOC标志位,即等待AD转换结束
    	return ADC_GetConversionValue(ADC1);					//读数据寄存器,得到AD转换的结果
    }
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科创工作室li

你的鼓励将是大学生的创作动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值