多变量Fox的H函数(Multivariable Fox H-function)

多变量Fox的\( H \)函数(Multivariable Fox H-function)是Fox H函数的一种推广,适用于多变量情形。它在复杂函数理论和特殊函数中有重要应用,特别是在处理多变量积分和微分方程时。以下是多变量Fox H函数的定义和一些基本性质的介绍:

多变量Fox H函数的定义

多变量Fox H函数 \( H_{p_1, q_1; \ldots; p_n, q_n}^{m_1, n_1; \ldots; m_n, n_n} \left[ \mathbf{z} \bigg| \begin{matrix} (a_{i,j}, \alpha_{i,j}) \\ (b_{i,j}, \beta_{i,j}) \end{matrix} \right] \) 可以表示为以下形式:

\[ 
H_{p_1, q_1; \ldots; p_n, q_n}^{m_1, n_1; \ldots; m_n, n_n} \left[ \mathbf{z} \bigg| \begin{matrix} (a_{i,j}, \alpha_{i,j}) \\ (b_{i,j}, \beta_{i,j}) \end{matrix} \right] = \frac{1}{(2\pi i)^n} \int_{\mathcal{L}_1} \cdots \int_{\mathcal{L}_n} \frac{\prod_{i=1}^n \prod_{j=1}^{m_i} \Gamma(b_{i,j} + \beta_{i,j} s_i) \prod_{j=1}^{n_i} \Gamma(1 - a_{i,j} - \alpha_{i,j} s_i)}{\prod_{i=1}^n \prod_{j=n_i+1}^{p_i} \Gamma(a_{i,j} + \alpha_{i,j} s_i) \prod_{j=m_i+1}^{q_i} \Gamma(1 - b_{i,j} - \beta_{i,j} s_i)} \prod_{i=1}^n z_i^{-s_i} ds_i 
\]

其中 \( \mathbf{z} = (z_1, \ldots, z_n) \) 是复数向量,\( \mathcal{L}_i \) 是复平面上的积分路径。

参数解释

- \( p_i, q_i \):表示每个变量 \( z_i \) 对应的伽马函数的数量。
- \( m_i, n_i \):表示每个变量 \( z_i \) 对应的伽马函数中取分子的数量。
- \( a_{i,j}, b_{i,j} \):复数,表示伽马函数的参数。
- \( \alpha_{i,j}, \beta_{i,j} \):正实数,表示伽马函数的参数。

积分路径

每个积分路径 \( \mathcal{L}_i \) 是一条从无穷到无穷的路径,绕过伽马函数的极点。这些路径的选择使得积分收敛,并且满足所有伽马函数参数的条件。

 多变量Fox H函数的性质

1. **对称性**:多变量Fox H函数在其参数和变量之间具有对称性,可以通过交换变量或参数来得到不同的表达式。
2. **特殊情况**:当 \( n = 1 \) 时,多变量Fox H函数退化为单变量Fox H函数。
3. **渐近性质**:在某些条件下,多变量Fox H函数具有明确的渐近行为,类似于单变量情况。
4. **应用**:多变量Fox H函数在统计分布、随机过程、积分变换、分数阶微分方程等领域有广泛应用。

 示例

假设我们有一个两变量的Fox H函数:

\[ 
H_{p_1, q_1; p_2, q_2}^{m_1, n_1; m_2, n_2} \left[ z_1, z_2 \bigg| \begin{matrix} (a_{1,j}, \alpha_{1,j})_{j=1, \ldots, p_1} & (a_{2,j}, \alpha_{2,j})_{j=1, \ldots, p_2} \\ (b_{1,j}, \beta_{1,j})_{j=1, \ldots, q_1} & (b_{2,j}, \beta_{2,j})_{j=1, \ldots, q_2} \end{matrix} \right]
\]

这个函数的表示形式和单变量类似,但每个变量 \( z_1, z_2 \) 都有自己的伽马函数参数和积分路径。

总结来说,多变量Fox H函数是单变量Fox H函数的推广,具有更复杂的参数和路径选择,适用于处理更复杂的多变量问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值