
知识点
文章平均质量分 72
本人在研究生期间看论文遇到的知识点汇总,希望对大家有帮助
正是读书时
三更灯火五更鸡,正是男儿读书时。
展开
-
角度信道模型
虽然在 SISO 系统中天线数量有限,角度信息不像 MIMO 系统那样起决定性作用,但在某些场景下(如存在角度相关的衰落特性),可以进一步考虑角度对复增益的影响,例如将复增益表示为。这些例子展示了角度信道模型中用离开角、到达角以及每条路径的复增益来参数化的具体应用和数学表达,通过这些参数可以更精确地描述和分析无线信道的特性。以一个简单的窄带MIMO信道模型为例,假设发射端有(N_t)根天线,接收端有(N_r)根天线,信道可以表示为。,可以实现高精度的波束赋形和预编码,提高系统的频谱效率和链路可靠性。原创 2025-02-17 15:50:56 · 637 阅读 · 0 评论 -
量化噪声介绍
量化噪声eqte_q(t)eqt定义为模拟信号xatx_a(t)xat的采样值xanTsx_a(nT_s)xanTs与量化后的数字信号xqnTsx_q(nT_s)xqnTseqtxanTs−xqnTseqtxanTs−xqnTs其中TsT_sTs为采样周期,nnn为采样点序号。量化噪声是平稳的随机过程。原创 2025-02-14 14:20:24 · 949 阅读 · 0 评论 -
香农公式:通信世界的基石(定义、证明、性质、列子详解)
香农公式(Shannon’s Formula)描述了在给定带宽和信噪比条件下,一个通信信道能够无差错传输的最大数据速率,即信道容量。CBlog21SNCBlog21NSCCC:信道容量(单位:比特/秒,bps)BBB:信道带宽(单位:赫兹,Hz)SSS:信号功率NNN:噪声功率SNNS:信噪比(SNR)带宽和信噪比。香农公式以其简洁的形式揭示了通信系统的本质规律。它告诉我们,在有限的带宽和噪声环境下,如何最大化信息传输的效率。原创 2025-02-13 15:13:54 · 1410 阅读 · 0 评论 -
天线阵列引导向量
Nθaθ)N×1dλθnφn−2πλdn−1sinθn12⋯Naθ1e−jφ1e−jφ2⋯e−jφN−1Tj−1d2λθφn−2πλdn−1sinθ−πn−1sinθθ30∘a30∘)n1φ101n2φ2−π2−1sin30∘−2πe−j2πn3φ3−π3−1。原创 2025-01-18 10:58:10 · 876 阅读 · 0 评论 -
伪逆介绍以及在信道估计与均衡中的应用
在通信系统中,信号经过信道传输后会发生失真。例如在一个多输入多输出(MIMO)通信系统中,设发送信号向量为。,需要进行信道估计和均衡。在最小二乘意义下,我们可以通过求伪逆来得到一个估计的均衡器。假设我们已经对信道矩阵。进行了估计(通过训练序列等方法),当。,它们之间的关系可以表示为。原创 2025-01-18 10:42:48 · 437 阅读 · 0 评论 -
Bussgang方法
这只是一个简单的示例,实际应用中的Bussgang算法可能会涉及更复杂的信道模型、信号处理和优化策略。原创 2025-01-18 10:35:12 · 939 阅读 · 0 评论 -
矩母函数(MGF)
矩母函数(Moment Generating Function,MGF)是概率统计中描述随机变量分布特征的重要工具。MGF的主要用途是通过导数来计算随机变量的矩(比如均值、方差等),同时它也能帮助确定随机变量的分布。对于随机变量XXX,其矩母函数MXtM_X(t)MXtMXtEetX∫−∞∞etxfXxdxMXtEetX∫−∞∞etxfXxdxttt是实数;原创 2025-01-08 16:10:55 · 1444 阅读 · 0 评论 -
保密中断概率(SOP)、非零保密容量的概率(PNSC)和平均保密速率(ASR)
原创 2024-11-13 09:20:00 · 356 阅读 · 0 评论 -
Fisher-Snedecor 分布
原创 2024-11-13 09:18:26 · 154 阅读 · 0 评论 -
齐次泊松点过程
原创 2024-11-13 09:16:52 · 175 阅读 · 0 评论 -
独立非同分布(i.n.i.d.)指数随机变量的和的概率密度函数 (PDF)
**指数衰减项 \(e^{-\frac{x}{\lambda_k}}\)**:它表明了 \(S\) 的概率密度随着 \(x\) 的增大而衰减的方式,具体由 \(k\) 对应的速率参数决定。- **分母项 \(\lambda_j - \lambda_k\)**:这个项确保了每个部分概率密度函数是以独特的方式加权,使得整体概率密度函数反映了所有不同速率参数的影响。这里,\(\lambda_k\) 是每个 \(X_k\) 的速率参数。我们需要求和 \(S\) 的概率密度函数 \(f_S(x)\)。原创 2024-08-20 10:44:46 · 564 阅读 · 0 评论 -
Meijer‘s G 函数
Bessel函数: \( J_\nu(z) = G_{0,2}^{1,0} \left( \frac{z^2}{4} \ \bigg| \begin{array}{c} - \\ \frac{\nu}{2}, -\frac{\nu}{2} \end{array} \right) \)- Gamma函数: \( \Gamma(z) = G_{0,1}^{1,0} \left( z \ \bigg| \begin{array}{c} - \\ 0 \end{array} \right) \)原创 2024-08-20 10:08:51 · 1276 阅读 · 0 评论 -
Gauss超几何函数详细介绍
( (a)_n \) 是升阶乘(Pochhammer符号),定义为 \( (a)_n = a(a+1)(a+2)\dots(a+n-1) \),对于 \( n = 0 \),\( (a)_0 = 1 \)。Gauss超几何函数是更广泛的超几何函数的一部分,其他超几何函数包括合流超几何函数(Kummer函数)和广义超几何函数(pFq函数)。\( a \)、\( b \)、\( c \) 是任意的复数,\( z \) 是变量,通常在复数域中取值。其中,\( C_1 \) 和 \( C_2 \) 是常数。原创 2024-08-18 10:03:43 · 1595 阅读 · 0 评论 -
Euler-Gauss 极限
是一个在数学分析中涉及无穷级数和极限概念的定理。Euler-Gauss 极限的研究旨在确定在某些条件下,这样的级数是否收敛,以及它们的和是什么。- **超几何级数**:Euler-Gauss 极限能够帮助研究一些复杂的超几何级数的收敛性,这些级数在许多数学和物理学问题中出现。- **渐近分析**:Euler-Gauss 极限在处理渐近级数时特别有用,尤其是当直接计算级数和是不可行的情况下。- **特殊函数**:许多特殊函数,如贝塞尔函数和勒让德多项式,涉及Euler-Gauss 极限的概念。原创 2024-08-17 14:33:05 · 900 阅读 · 0 评论 -
复高斯分布的模平方服从非中心卡方分布
已知 \( X \sim \mathcal{N}(\mu_X, \sigma^2) \) 和 \( Y \sim \mathcal{N}(\mu_Y, \sigma^2) \),那么 \( X^2 + Y^2 \) 的分布为非中心卡方分布。其中,\( X \) 和 \( Y \) 是服从均值为 \( \mu_X \) 和 \( \mu_Y \),方差为 \( \sigma^2 \) 的实高斯分布的独立随机变量。假设 \( Z \) 是一个复随机变量,且 \( Z \) 服从复高斯分布。原创 2024-08-17 08:37:55 · 1168 阅读 · 1 评论 -
Nakagami衰落——详细介绍
这种现象被称为衰落。根据传播环境的不同,衰落可以表现为瑞利衰落、莱斯衰落或Nakagami衰落等。1. 移动通信:Nakagami模型适用于复杂的移动通信环境,特别是在城市环境中,建筑物和其他障碍物引起的多径传播可能导致m参数在0.5到2之间变化。2. 无线传感器网络:在无线传感器网络中,不同传感器之间的信道可以表现出不同的衰落特性,Nakagami衰落模型可以灵活地适应这些不同的环境。3. 卫星通信:在卫星通信中,信号可能通过不同的路径传播到接收端,Nakagami衰落模型可以描述不同路径下的衰落特性。原创 2024-08-12 08:35:45 · 1385 阅读 · 0 评论 -
鲁棒性(Robustness)介绍
鲁棒性是Robust的音译,意味着健壮和强壮。它特指系统在异常和危险情况下生存的能力。原创 2024-08-12 08:31:11 · 1746 阅读 · 0 评论 -
OFDM详细介绍
OFDM的核心思想是将整个可用的频带划分为多个子载波,并在这些子载波上并行传输数据。无线信道中存在多径效应、干扰等问题,但由于OFDM的设计,正交子载波之间不会相互干扰,加上循环前缀的保护,即使信号受到反射、衰减等影响,接收端仍然能够较好地恢复原始数据。它通过将高数据率信号分成多个较低数据率的子信号,每个子信号通过不同的载波频率传输,从而提高数据传输的可靠性和抗干扰能力。这是原始信号的一部分重复,它可以防止多径效应引起的符号间干扰(ISI),提高接收端信号的解调性能。你的路由器通过Wi-Fi传输视频数据。原创 2024-08-09 09:05:57 · 1588 阅读 · 0 评论 -
复高斯随机变量的模平方服从伽马分布
我们知道,具有自由度 \( k \) 的卡方分布可以看作是伽马分布 \( \text{Gamma}(\alpha, \beta) \) 的特例,其中 \(\alpha = \frac{k}{2}\) 且 \(\beta = 2\)。其中 \( X \) 和 \( Y \) 是独立同分布的实值高斯随机变量,且均服从均值为零、方差为 \(\sigma^2\) 的正态分布,即 \( X, Y \sim \mathcal{N}(0, \sigma^2) \)。原创 2024-08-08 09:05:40 · 676 阅读 · 0 评论 -
拉普拉斯逆变换和矩生成函数(MGF)之间的关系
这个公式表明,我们可以通过对 \( M_X(s) \) 除以 \( s \) 然后进行拉普拉斯逆变换,得到随机变量 \( X \) 的累积分布函数 \( F_X(x) \)。(1)首先,我们知道 \( M_X(s) = \int_{0}^{\infty} e^{-st} f_X(t) \, dt \)。- \( M_X(s) = \mathbb{E}[e^{sX}] \) 是随机变量 \( X \) 的矩生成函数(MGF)。其中 \( f_X(t) \) 是 \( X \) 的概率密度函数 (PDF)。原创 2024-08-01 11:27:57 · 908 阅读 · 1 评论 -
最大比率合并(Maximum Ratio Combining)(MRC)
权重通常设定为信道增益的复共轭,即 \(\mathbf{w}_i = \mathbf{h}_i^*\),其中 \(\mathbf{h}_i\) 是第 \(i\) 个信道的增益。其中 \(h_i\) 是第 \(i\) 条信道的增益,\(s\) 是发射信号,\(n_i\) 是第 \(i\) 个天线接收到的噪声。信号接收:接收端拥有多个天线,每个天线接收相同的信号,但由于不同的路径损耗、衰落和噪声的影响,每个天线接收的信号可能有所不同。信号合并:将所有加权后的信号相加,得到最终的输出信号。原创 2024-08-01 09:45:13 · 1865 阅读 · 0 评论 -
蒙特卡罗模拟
2. 生成随机样本:在单位正方形 \([0, 1] \times [0, 1]\) 中生成随机点 \((x_i, y_i)\)。\[ \pi \approx 4 \cdot \frac{\text{圆内点数}}{\text{总点数}} \]然后,建立相应的数学模型。3. 计算输出:检查每个点是否在单位圆内,即判断 \( x_i^2 + y_i^2 \leq 1 \)。例如,对于积分问题,计算 \( f(x_i) \)。4. 统计分析:对所有样本的输出结果进行统计分析,以估计系统的整体行为或问题的解。原创 2024-07-30 09:13:15 · 752 阅读 · 1 评论 -
准静态平坦衰落信道(Quasi-Static Flat Fading Channel)
由于噪声的存在,接收信号会在 \( h \cdot x(t) \) 的基础上加上一些随机扰动。在准静态平坦衰落信道中,信道增益 \( h \) 可以被视为在短时间内(例如一个符号周期或几个符号周期内)保持不变。假设在当前符号周期内,信道增益 \( h \) = 0.8 + 0.6j,且噪声 \( n(t) \) 是均值为0、方差为0.01的复数高斯白噪声。- 莱斯衰落信道:假设多径信号中有一条直达路径,信道增益 \( h \) 服从莱斯分布。- \( h \) 是信道增益,表示信道的复数增益系数。原创 2024-07-29 10:21:13 · 1139 阅读 · 1 评论 -
非中心卡方分布的矩生成函数
3. MGF 的形式:对于标准的中心卡方分布,其 MGF 为 \( M(t) = (1 - 2t)^{-\frac{k}{2}} \)。1. 定义:设 \( X \sim \chi^2(k, \lambda) \),即 \( X \) 服从非中心卡方分布。这里的 \( k \) 和 \( \lambda \) 分别是非中心卡方分布的自由度和非中心参数。要证明图片中的内容,我们可以逐步展开说明。这里的 \( \nu \)、\( \sigma_1^2 \) 和 \( \sigma_2^2 \) 是参数。原创 2024-07-26 20:19:21 · 1216 阅读 · 1 评论 -
伽马函数的极点及相关性质
每个极点的留数可以通过公式 \(\text{Res}(\Gamma(z), z = -n) = \frac{(-1)^n}{n!首先,我们知道伽马函数 \(\Gamma(z)\) 在非正整数点(即 \(0, -1, -2, -3, \ldots\))处具有简单极点。\[ \Gamma(z) \sim \frac{-1}{z + 1} \quad \text{当 } z \to -1 \]这意味着 \(\Gamma(z)\) 的值可以通过 \(\Gamma(z+1)\) 的值递推得到。原创 2024-07-26 10:02:08 · 3702 阅读 · 1 评论 -
erf 和 erfc 函数介绍以及在通信系统中的应用
2. 互补误差函数 \( \text{erfc}(1.5) \approx 0.034 \) 表示从1.5到无穷大的范围内标准正态分布的累积概率约为0.034。1. 误差函数 \( \text{erf}(1.5) \approx 0.966 \) 表示从0到1.5的范围内标准正态分布的累积概率约为0.966。计算 \( \text{erf}(1.5) \) 和 \( \text{erfc}(1.5) \),并解释其含义。这些函数的计算和解释在许多统计和概率问题中非常有用,尤其是在评估置信区间和假设检验时。原创 2024-07-26 09:07:44 · 5284 阅读 · 1 评论 -
H变换理论
对于整数 \( m, n, p, q \) ,满足 \( 0 \leq m \leq q \), \( 0 \leq n \leq p \),对于 \( a_i, b_j \in \mathbb{C} \) ,复数集合,并且对 \( \alpha_i, \beta_j \in \mathbb{R}_+ = (0, \infty) \) ( \( i = 1, 2, \cdots, p;其中 \( \log|z| \) 表示 \( |z| \) 的自然对数,且 \( \arg z \) 不一定是主要值。原创 2024-07-25 09:19:34 · 463 阅读 · 1 评论 -
瑞利衰落(Rayleigh Fading)
在无线通信中,信号从发射天线到接收天线的路径不仅有直射路径,还会有由于环境中的反射、散射和折射等产生的多个路径。瑞利衰落的核心特征是接收信号的幅度服从瑞利分布。假设信号的幅度是由多个独立的路径信号叠加而成的,每条路径的信号幅度符合独立同分布的高斯分布,那么接收信号的幅度将遵循瑞利分布。通过这些步骤,设计师可以评估无线通信系统在瑞利衰落环境下的性能,并采取相应的设计优化措施来提高系统的可靠性和效率。信道容量计算:在瑞利衰落的环境下,计算信道容量,并比较不同系统设计(如MIMO系统)对信道容量的提升。原创 2024-07-24 09:20:32 · 2800 阅读 · 0 评论 -
安全分集阶数、阵列增益和速率缩放
在MIMO系统中,通过协调多个天线同时发射相同的信号,可以增强接收端的信号强度,从而提升合法用户的信道质量。阵列增益能够提升接收信号的质量,从而提高通信系统的保密性能。在一个多天线系统中,通过增加发射端和接收端的天线数量,可以增加独立的信道路径,从而提升安全分集阶数。例如,在多天线系统中,通过增加发射天线或接收天线数量,可以增加信道的独立路径,从而提升系统的抗干扰和抗窃听能力。在安全通信中,阵列增益通过提升信噪比(SNR)来提高合法用户的信道容量,同时相对降低窃听者信道的信噪比,从而提升保密容量。原创 2024-07-22 09:59:45 · 1180 阅读 · 0 评论 -
指数积分函数(Exponential Integral Function)
指数积分函数在很多数学软件中都有内置函数,如Mathematica, MATLAB, Python的SciPy库等,都可以直接调用来计算 \( \text{Ei}(x) \)。其中 \( x \) 可以是实数或复数。换句话说,\( \text{Ei}(x) \) 是从 \(-x\) 到无穷大 \( \infty \) 的积分。- 对于正值 \( x \),\(\text{Ei}(x)\) 是单调递增的。- 对于负值 \( x \),\(\text{Ei}(x)\) 是单调递减的。原创 2024-07-22 09:28:00 · 2648 阅读 · 0 评论 -
香农定理公式和综合考虑的链路容量公式
2. 使用香农定理计算基础容量:\( C = 20 \times 10^6 \log_2(1 + 1000) \approx 20 \times 10^6 \times 9.97 \approx 199.4 \text{Mbps} \)。为了计算链路容量的期望值,我们假设信噪比 \( \frac{S}{N} \) 是一个随机变量 \(Y_d\) ,具有概率密度函数 \( f_{Y_d}(y) \)。- \(\mathbb{E}\{C_d\}\) 表示链路遍历容量 \(C_d\) 的期望值。原创 2024-07-22 09:10:54 · 1091 阅读 · 0 评论 -
累积密度函数(Cumulative Density Function,CDF)
当 \(x \to +\infty\) 时,\(F_X(x) \to 1\)。假设有一个连续型随机变量 \(Y\) 服从均匀分布 \(U(a, b)\),其中 \(a = 0\),\(b = 1\)。右连续性:CDF是右连续函数,即对于任意 \(x\),有 \(\lim_{x \to x_0^+} F_X(x) = F_X(x_0)\)。非递减性:CDF是一个非递减函数,即对于任意的 \(x_1 < x_2\),有 \(F_X(x_1) \leq F_X(x_2)\)。原创 2024-07-21 09:56:12 · 2633 阅读 · 0 评论 -
信噪比(Signal-to-Noise Ratio, SNR)详细介绍
信噪比(Signal-to-Noise Ratio,SNR)是衡量信号质量的重要参数,表示有用信号的功率与背景噪声功率的比值。其中,\( P_{\text{signal}} \) 表示信号功率,\( P_{\text{noise}} \) 表示噪声功率。- 音频处理:在音频设备和录音系统中,SNR决定了音质的好坏,高SNR表示音频信号更清晰,噪声更少。- 低SNR:信号中噪声成分较大,接收端难以分辨有用信号和噪声,可能导致误码率高,通信质量差。SNR定义为信号功率与噪声功率之比,通常用分贝(dB)表示。原创 2024-07-21 09:48:21 · 57499 阅读 · 4 评论 -
不完全伽马函数 (Incomplete Gamma Function)
不完全伽马函数是伽马函数的推广,分为上不完全伽马函数和下不完全伽马函数。在卡方分布、伽马分布和指数分布等中,不完全伽马函数用于累积分布函数 (CDF) 的计算。这是伽马函数与不完全伽马函数之间的关系,其中 \(\Gamma(s)\) 是完全伽马函数。不完全伽马函数在计算特殊函数(如贝塞尔函数、误差函数等)时,起到重要作用。例如,计算 \(\gamma(2, 3)\) 可以用下不完全伽马函数求值。不完全伽马函数是伽马函数的推广,分为上不完全伽马函数和下不完全伽马函数。原创 2024-07-19 09:38:46 · 2437 阅读 · 0 评论 -
可重构智能表面 (Reconfigurable Intelligent Surface, RIS)
可重构智能表面 (RIS) 作为一种创新的无线通信技术,通过智能控制反射单元的相位和幅度,实现对信号传播环境的优化。- **反射单元**:RIS 由大量的小型反射单元(如天线阵列、超表面等)组成,每个单元可以独立地控制反射信号的相位和幅度。- **控制器**:一个集中的控制器用于协调和调节每个反射单元的状态,根据预设的算法和实时反馈调整反射特性。2. **灵活性和可控性**:RIS 可以动态调整反射特性,适应不同的环境和应用需求,提供高度灵活的信道重构能力。原创 2024-07-19 09:47:32 · 2654 阅读 · 0 评论 -
多重Mellin-Barnes型围线积分以及与多重H函数的关系
Mellin-Barnes 积分是分析特殊函数和超几何函数的一种强大工具,多重 H 函数是这些特殊函数中的一种广义形式。其中 \(p_i, q_i, r_i, s_i\) 是非负整数,\(a_{i,j}, b_{i,j}\) 是复数,\(A_{i,j}, B_{i,j}\) 是正实数,\(x_1, x_2, \ldots, x_m\) 是变量。其中,\(G(s_1, s_2, \ldots, s_n)\) 是待积分的核函数,通常包含 Gamma 函数或其他特殊函数,\(L_i\) 是适当选择的积分路径。原创 2024-07-19 10:46:03 · 796 阅读 · 1 评论 -
多变量Fox的H函数(Multivariable Fox H-function)
多变量Fox H函数 \( H_{p_1, q_1;其中 \( \mathbf{z} = (z_1, \ldots, z_n) \) 是复数向量,\( \mathcal{L}_i \) 是复平面上的积分路径。- \( m_i, n_i \):表示每个变量 \( z_i \) 对应的伽马函数中取分子的数量。- \( \alpha_{i,j}, \beta_{i,j} \):正实数,表示伽马函数的参数。- \( p_i, q_i \):表示每个变量 \( z_i \) 对应的伽马函数的数量。原创 2024-07-19 09:20:59 · 1024 阅读 · 0 评论 -
平均保密速率 (Average Secrecy Rate, ASR)
设 Alice 到 Bob 的信道增益为 \( h_b \),Alice 到 Eve 的信道增益为 \( h_e \),并且假设两者的信道是独立的随机变量。- 设定 Alice 到 Bob 和 Alice 到 Eve 的信道模型,得到信道增益 \( h_b \) 和 \( h_e \) 的分布。- 通过信道增益的分布,计算 Bob 和 Eve 的信噪比 \( \gamma_b \) 和 \( \gamma_e \) 的分布。其中 \([x]^+\) 表示 \(\max(x, 0)\),以确保保密速率非负。原创 2024-07-19 10:10:59 · 1274 阅读 · 0 评论 -
保密中断概率 (Secrecy Outage Probability)
2. **计算 SNR 分布**:通过信道增益的分布,计算 Bob 和 Eve 的信噪比 \( \gamma_b \) 和 \( \gamma_e \) 的分布。1. **确定信道模型**:设定 Alice-Bob 和 Alice-Eve 的信道模型,得到信道增益 \( h_b \) 和 \( h_e \) 的分布。3. **计算 SOP**:利用这些分布,计算 \( R_b \) 和 \( R_e \) 的概率密度函数,然后求解保密中断概率。其中 \( R_s^{th} \) 是所需的保密速率阈值。原创 2024-07-19 09:12:19 · 978 阅读 · 1 评论 -
Stirling 公式 (Stirling‘s Formula)和 Stirling 公式展开的伽马函数近似
在计算组合数时,例如 \( \binom{n}{k} = \frac{n!} \),使用 Stirling 公式可以简化计算。\) 这样的大数阶乘,直接计算非常复杂,使用 Stirling 公式可以得到一个近似值。在处理大样本问题时,Stirling 公式帮助简化概率分布的计算,例如二项分布、泊松分布和正态分布的近似。\) 表示 \( n \) 的阶乘,\(\pi\) 是圆周率,\(e\) 是自然对数的底。Stirling 公式的推导方法有很多种,以下是一种经典的推导方法,利用了积分和对数的技巧。原创 2024-07-19 10:31:38 · 1336 阅读 · 0 评论