高等数学(上)题型笔记(三)微分中值定理及导数的应用

 目录

1 微分中值定理

1.1 罗尔定理(Rolle)

1.2 拉格朗日中值定理(Lagrange)

1.3 柯西中值定理(Cauchy)

 2 洛必达法则(求极限)

3 泰勒公式 

4 函数的单调性与极值 

4.1 常规方法 

4.2 特殊方法

5 曲线的凹凸性与拐点  

6 函数的最值 

6.1 闭区间求最值

 6.2 开区间求最值

7 介值定理

8 曲线的渐近线 


1 微分中值定理

1.1 罗尔定理(Rolle)

ccef378353bf4e07a68a9b98ea562557.jpeg

答题步骤:

7a0d551836464a4e80aee0c350359a0d.jpeg

例题: 

be55370090a64eeabd35fbeabbd38659.png 774a8a62fd2649ed84d061ef75c469e0.jpeg

f3a3fc646d7048b5bcf95587c12aadc7.png3d13f4ec682540049e839593ff922ec9.jpeg 


1.2 拉格朗日中值定理(Lagrange)

771ef700a575450d86867eff9ee2dcdb.jpeg

例题:

a92b9426572d44c7ac01546a0f51e1c9.png fd9fc8c22ed04907b69ad67d4f05c352.jpeg

 f99c67b988e9415bb45cc1a7a03acba4.png

4c6306733dce4682b1f8f075b524523f.jpeg


1.3 柯西中值定理(Cauchy)

2876eba86ffd4eb7a1ea8e069ded0742.jpeg


 2 洛必达法则(求极限)

f535aad13749446b81bd29f450a1faca.jpeg 6f09bf95c0824a58a11bf6010b53b157.jpeg

0461b924f81445f3bb832b8fb7d71a04.png 1f1c57e36bbf42e1952bbcbe353e30b4.jpege132af8ca5ce4ce19da6e6142ec6076c.jpeg


3 泰勒公式 

暂无相关内容(不考不学,嘿嘿) 


4 函数的单调性与极值 

858ff184e05d479bafb24fea9d40fdce.jpeg


4.1 常规方法 

9c08389c613f4d9f83d294a77fd674a5.jpeg

例题: 

370eb7c0e9174d9686746d81990b7f05.png

e36502072e0647fe80e50d138a4c9f8c.jpegf226b22604e145f38bc7c054e55b589a.png 

e7b60d7d93014d5bb1c9eeb4e05bfcba.jpeg693624f614cf440cbd01df71eeca74b3.png 409008e2b22b42ef9527f19b931d846d.jpeg


4.2 特殊方法

通过二次求导直接判断极值

注意点:适用一阶导数为0且二阶导数不为零的点

a72c9a529d2143a698997a33f03ea884.jpeg

例题: 

31d08c33e5da471492ec18f7af5a279c.jpeg


5 曲线的凹凸性与拐点  d0e79b618b1d42c7aa520984253b4224.jpeg

5ba635b9f721480494d146227dc7bc14.jpeg

注意判断是否是拐点:凹凸区间分界点814f219855134333be6cad9095304b7a.jpeg 

1878416c48c94046b43c36180ce44640.jpeg

例题:

e22bb0a2e0514d9aa35cb182558181bb.png

1e460e8169424a6294306c3cd2313151.jpegeea2feee2ea6491cad0e19e7a6945bcb.png 

5efb88c95b2b4ae49878e81c447b9ee3.jpeg1892f9854f2d4d4f87afe119c1d7fb29.png3bde315ecb2147ca9c734676a46a8f07.jpeg


6 函数的最值 

6.1 闭区间求最值

直接比较端点值与极值点对应的函数值

b79a843fa0274466ae4c78d221f96f73.jpeg0aa021f522c84cd48d23befbe37c0cca.jpeg

例题:

ba85e7b29d884f39a7239bfd15ab99fe.png

452f0926215b4d609a041263483fc5ab.jpegdbb1160f2a484cc59345def7e5981de3.png 

ef0223f9414649c29b96560441cc6d24.jpeg


 6.2 开区间求最值

唯一的极值就是最值

d989b2cdcb064435b1fc615335965a9d.jpeg215fa11bc39545b98b3ee1c289bd2601.jpeg


7 介值定理

 31191709425f49e2bbb2d2213b5891dc.png

例题:

16ec1967be6c40fab69fc6376be7dbcd.png

fd58f5788b264bca8cafbadb18ecd5e9.jpeg


8 曲线的渐近线 

188884e924694a16ad0f545e8b119160.jpeg例题:

c55fba364eab403c902a7f2ec99ba98e.png

be384b39f178459d88c5aac071ba6773.jpeg

d9c1b15013414404bb1bdefecd8163eb.png

bd0de36a7e834553a0d0a7b61ced6b36.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值