微积分归纳总结:中值定理
关于连续函数的中值定理
函数连续则有一下中值定理
名称 | 内容 | 证明 |
---|---|---|
有界与最值 | 闭区间的连续函数在该区间上有界并一定有最大值和最小值 | 同济的高数书上证明从略 |
零点定理 | 若函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,且f(a),f(b)异号,则 f ( x ) f(x) f(x)在开区间内 ( a , b ) (a,b) (a,b)内只有一个零点 | 二分法:构造性证法 |
介值定理 | 设函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,且 f ( a ) ≠ f ( b ) f(a)\neq f(b) f(a)=f(b)则对介于 f ( a ) f(a) f(a)与 f ( x ) f(x) f(x)之间的任何实数 μ \mu μ,在区间 ( a , b ) (a,b) (a,b)内至少存在一点 x 0 x_0 x0,使得 f ( x 0 ) = μ f(x_0)=\mu f(x0)=μ | 构造辅助函数用零点定理证明 |
平均值定理 | 当 a < x 1 < x 2 < ⋯ < x n < b a<x_1<x_2<\dots<x_n<b a<x1<x2<⋯<x |