描述
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible
。
给定一张边带权的无向图G=(V,E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。
由V中的全部n个顶点和E中n−1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。
输入
第一行包含两个整数n和m。
接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。
输出
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible
。
输入样例 1
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例 1
6
原理:
首先初始化所有距离dist为正无穷,用集合S表示当前已经在连通块的点
需要n次迭代,在每次迭代中:
1.先找到不在S中的最小点t(距离最近)
2.用t去更新其他点到集合S的距离,区别就在这里:Dijkstra更新时是dist[b] = min(dist[b], dist[t] + w),而prim就是dist[b] = min( dist[b],w)
3.再把确定距离的t加入集合S中
样例分析:
1.首先把点1加入集合中,以此得到其他点到{1}的距离:dist[2]=1,dist[3]=2,dist[4]=3
2.再在{2,3,4}中找到dist[2] (最小点)来更新其他点到{1,2}的距离,所有dist都没有发生改变,同样后面的更新也没有改变目前的dist
3.最后:dist[1]=0,dist[2]=1,dist[3]=2,dist[4]=3,最小生成树为1分别到2,3,4各有一条边,距离为相应的dist[ii]。
代码如下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cctype>
#include <cstring>
#include <iostream>
#include <sstream>
#include <string>
#include <list>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <algorithm>
#include <functional>
#define lowbit(x) (x &(-x))
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
typedef long long ll;
typedef pair<ll,ll> pll;
const int inf = 0x3f3f3f3f;
const double PI = acos(-1.0);
const double EXP = 1e-8;
const ll MOD = 1e9 + 7;
const int N = 510;
int n, m;
int g[N][N], dist[N];
bool st[N];
int prim()
{
mem(dist, inf);
int res = 0;
for(int i = 0; i < n; i ++){
int t = -1;
//先找到非集合S内的最小点
for(int j = 1; j <= n; j ++)
if(!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
//如果不连通,说明没有最小生成树
if(i && dist[t] == inf) return inf;
//切记要先加dist[t]的距离,不然有自环的时候dist[t]可能被自己更新
if(i) res += dist[t];
//更新其他点到集合的距离
for(int j = 1; j <= n; j ++)
dist[j] = min(dist[j], g[t][j]);
//再把t加入集合S中
st[t] = 1;
}
return res;
}
signed main()
{
IOS;
cin >> n >> m;
mem(g, inf);
while(m --){
int a, b, c;
cin >> a >> b >> c;
g[a][b] = g[b][a] = min(g[a][b], c);
}
int ans = prim();
if(ans == inf) puts("impossible");
else cout << ans << endl;
return 0;
}