李白打酒加强版

P2039 - [蓝桥杯2022初赛] 李白打酒加强版 - New Online Judge (ecustacm.cn)

1.题目分析:

题目的大概意思为:

设李白有酒va,有两种操作。并且最后一次操作为(2)

  • (1)va=va*2(一共n次)

  • (2)va=va-1(一共m次)

va 初始值为 2,要求经过 n+m次操作后 va=0的方案数取模。

2.状态

状态设计:dp[i][j][k]的值表示遇到i家店,j朵花,酒壶中还剩k斗酒的可能情况数;

状态转移方程:dp[i][j][k]=dp[i-1][j][k/2](i>1&&k%2==0) + dp[i][j-1][k+1](j>1);

边界设计:除了dp[0][0][2]=1,其他元素全为0;

他一共遇到店 N 次,遇到花 M 次。已知最后一次遇到的是花, 他正好把酒喝光了;所以

最后一次肯定遇到的是花,那么最后的结果便是dp[N][M-1][1];

并且酒壶中酒的容量不能超过M;


#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long
 
const int N = 110, mod = 1000000007;
int n, m;
int f[N][N][N];
 
void solve() {
    cin >> n >> m;
 
    memset(f, 0, sizeof f);
     
    f[0][0][2] = 1;
 
    for(int i = 0; i <= n; i++) {  //遇店加一倍
        for(int j = 0; j <= m; j++) { //遇花喝一斗
            for(int k = 0; k <= m; k++) {
                if(i >= 1 && k % 2 == 0)
                f[i][j][k] = (f[i][j][k] + f[i - 1][j][k / 2]) % mod;
                if(j >= 1)
                f[i][j][k] = (f[i][j][k] + f[i][j - 1][k + 1]) % mod;
            }
        }
    }
 
    cout << f[n][m - 1][1] << endl;
}
 
signed main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
 
    int t;
    cin >> t;
    while(t--) {
        solve();
    }
 
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值