请你将一些箱子装在 一辆卡车 上。给你一个二维数组 boxTypes ,其中 boxTypes[i] = [numberOfBoxesi, numberOfUnitsPerBoxi] :numberOfBoxesi 是类型 i 的箱子的数量numberOfUnitsPerBoxi 是类型 i箱子可以装载的单元数量。整数 truckSize 表示卡车上可以装载 箱子 的 最大数量 。只要箱子数量不超过 truckSize ,你就可以选择任意箱子装到卡车上。返回卡车可以装载单元的 最大 总数。
示例 :
输入:boxTypes = [[1,3],[2,2],[3,1]], truckSize = 4
输出:8
解释:箱子的情况如下:
-
1 个第一类的箱子,里面含 3 个单元。
-
2 个第二类的箱子,每个里面含 2 个单元。
-
3 个第三类的箱子,每个里面含 1 个单元。
可以选择第一类和第二类的所有箱子,以及第三类的一个箱子。
单元总数 = (1 * 3) + (2 * 2) + (1 * 1) = 8
由于每个箱子占地方都是一样的,不同的是每个箱子的装载单元数。根据贪心算法的原理,哪个箱子单元数多,就先装哪一类箱子,直到卡车装满,或者开始装下一类箱子。
首先根据箱子的装载单元数排序,装载单元数越多的箱子,就把这一类箱子放到其他箱子的前面。
然后判断卡车能否装完这一类箱子。
1.能装完,卡车总装载单元数加上这一类箱子总装载单元数,更新卡车剩余的可装载箱子数量。
2.不能装完,卡车总装载单元数加上这一类箱子能装走的箱子的总装载单元数。可装载箱子数量=0。
public class forth {
public static void sort(int [][] arr){
int[][] t=new int[1]