设顺序存储的二叉树中有编号为i和j的两个结点,请设计算法求出它们最近的公共祖先结点的编号和值。
输入格式:
输入第1行给出正整数n(≤1000),即顺序存储的最大容量;第2行给出n个非负整数,其间以空格分隔。其中0代表二叉树中的空结点(如果第1个结点为0,则代表一棵空树);第3行给出一对结点编号i和j。
题目保证输入正确对应一棵二叉树,且1≤i,j≤n。
输出格式:
如果i或j对应的是空结点,则输出ERROR: T[x] is NULL
,其中x
是i或j中先发现错误的那个编号;否则在一行中输出编号为i和j的两个结点最近的公共祖先结点的编号和值,其间以1个空格分隔。
输入样例1:
15
4 3 5 1 10 0 7 0 2 0 9 0 0 6 8
11 4
输出样例1:
2 3
输入样例2:
15
4 3 5 1 0 0 7 0 2 0 9 0 0 6 8
12 8
输出样例2:
ERROR: T[12] is NULL
思路:
这个顺序存储参考满二叉树,为空的地方它都用0表示了,那么每个点的子节点就是2n和2n+1
找父节点和子节点都很方便,找两个点的公共节点就让更大的那个减小,直到两个点到了同一个点
代码:
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 1010;
int n,x,y;
int a[N];
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)cin >> a[i];
cin >> x >> y;
if (!a[x]) {
cout << "ERROR: T[" << x << "] is NULL";
return 0;
}
if (!a[y]) {
cout << "ERROR: T[" << y << "] is NULL";
return 0;
}
while (x != y) {
if (x > y) {
if (x % 2 == 0)x /= 2;
else {
x -= 1;
x /= 2;
}
}
else {
if (y % 2 == 0)y /= 2;
else {
y -= 1;
y /= 2;
}
}
}
cout << x << " " << a[x];
return 0;
}