08线性回归+基础优化算法

P2基础优化算法


1.最常见的优化算法——梯度下降,用在模型没有显示解的情况下(线性回归有显示解,但是现实中很少有这样理想的情况)


2.梯度下降的实现方法:沿着反梯度更新方向参数求解

解释:
超参数:需要人为指定的值,而不是通过训练得到的参数值
反梯度方向:从外到内
步长:比如W0到W1的距离

学习率: 
 


3.梯度下降的常见版本——小批量随机梯度下降
做法:采取b个样本来近似损失
批量大小:b,同样也是一个超参数,不能太大也不能太小

总结:1.梯度下降通过不断沿着反梯度方向更新参数求解
           2.小批量随机梯度下降是深度学习默认的求解算法
           3.重要的两个超参数:批量大小,学习率

P3线性回归的从零开始实现

#3.2线性回归的从零开始实现

import random
import torch
from d2l import torch as d2l
#import d2l

疑问1:为什么不能直接 “import d2l” 而是要用 “from d2l import torch as d2l” 这个指令?这个指令又是什么意思?

"from xx import yy" 表示从xx这个包中引用yy这个类,"import xx as yy" 表示引用xx这个包,但是我把它叫作yy,常用语包的名称过长时候简化程序时用。

1.生成数据集

#3.2.1 生成数据集
def synthetic_data(w,b,num_examples):
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1,1))

true_w = torch.tensor([2,-3.4])
true_b = 4.2
features, labels = synthetic_data(true_w,true_b,1000)

print('features:', features[0],'\nlabel:', labels[0])
#绘图函数
d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1);
d2l.plt.show()

1.torch.normal( ),torch.matmul( )

①torch.normal(0, 1, (num_examples, len(w)))

意思为生成一个均值为0,方差为1的随机数

输出的形式:行数为num_examples的大小,列数为w的长度

详细解释:torch.normal函数用法

②torch.matmul(X, w)

意思为两个向量相乘

详细解释:【Pytorch】torch. matmul()

2.reshape((-1,1))

意思为输出的形状的列数固定为1,行数要计算机自动计算得来

详细解释:Python的reshape的用法:reshape(1,-1)

3.Pycharm上面编程的话,想要看到图像记得加上d2l.plt.show()

有很多类似,直接在anaconda prompt中编程有输出结果,而在pycharm中没有输出结果的问题,要记得在pycharm中添加输出结果的指令。

#3.2.2 读取数据集
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]
#读取并打印
batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    break

#3.2.3 初始化模型参数
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

#3.2.4 定义模型
def linreg(X, w, b):  #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b

#3.2.5 定义损失函数
def squared_loss(y_hat, y):  #@save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

#3.2.6 定义优化算法
def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

#3.2.7 训练
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
#输出误差估计
print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')

线性回归常用的优化算法包括梯度下降法和最小二乘法。梯度下降法是一种迭代的优化方法,通过不断调整权重参数来最小化损失函数。这种方法通过计算损失函数对每个权重参数的偏导数来更新参数,使得损失函数逐步减小。最小二乘法则是通过最小化观测值与模型预测值之间的残差平方和来求解线性回归的优化问题。它可以直接通过数学公式求得最优的权重参数。这两种优化算法线性回归中被广泛应用,并且各有优缺点,根据具体情况选择合适的算法进行使用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [【机器学习算法】线性回归算法](https://blog.csdn.net/weixin_43651049/article/details/122733618)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [MATLAB语言常用算法程序集](https://download.csdn.net/download/m0_58719994/88269420)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值