【C++算法】龙胆虎威倒水题

问题

在《⻁胆⻰威 3》这部电影中,恐怖分⼦在⼀个喷泉旁放置了炸弹,并提供 了⼀个 a=5 加仑的桶和⼀个 b=3 加仑的桶,如果拆弹⼈员能够利⽤这两个桶准 确的得到 c=4 加仑的⽔并放在⼀旁的秤上,炸弹就不会爆炸。

假定两个⽔壶 A 和 B,供⽔量不限。可以使⽤三种⽅法装⽔:

1 给⼀个⽔壶装⽔;

2 把⼀个⽔壶倒空;

3 从⼀个⽔壶倒进另⼀个⽔壶.

请采⽤图进⾏建模,获得状态转移图,并判断是否可以实现。

示例 1:

输⼊:a=5, b=3, c=4

输出:true

示例 2: 输⼊:a=2, b=6, c=5

输出:false

分析

这是一道典型的搜索类型的题目,我们采用 BFS 算法来搜索所有可能的状态,并尝试六种操作。通过在每个状态中记录两个桶中的水量,我们可以检查是否找到了目标状态,即 A 和 B 中的水量之和等于 4。如果找到了目标状态,则程序会输出解决方案,即 A 和 B 中的水量。如果没有找到目标状态,则程序会输出 "No solution found."

    按照题目的例子,我们可以构造状态转移图来更好的理解题意

首先,操作的种类是固定的,总共就6种操作方式,我们只需要对每个阶段都执行一次这些操作,就能通过BFS算法判断有没有最优解,如图所示,由于并不是每次都需要把6个操作执行一次,这6个操作实际只需要执行最多两个,因为执行过的操作不会再执行一次,然后这6个操作又是分为对A和对B的操作,所以每次只需要3选2或1就行了。

代码和运行结果

#include <iostream>

#include <queue>

#include <unordered_set>

using namespace std;



struct State

{

    int a, b;



    bool operator==(const State& other) const {

        return a == other.a && b == other.b;

    }

};



namespace std {

    template <>

    struct hash<State> {

        size_t operator()(const State& state) const {

            return state.a * 10 + state.b;

        }

    };

}



int main() {

    const int a_capacity = 5, b_capacity = 3, target = 4;



    queue<State> q;

    unordered_set<State> visited;



    State initial_state = { 0, 0 };

    q.push(initial_state);

    visited.insert(initial_state);



    while (!q.empty()) {

        State curr = q.front();

        q.pop();



        if (curr.a + curr.b == target) {

            cout << "True" << endl;

            cout << "A: " << curr.a << ", B: " << curr.b << endl;

            return 0;

        }



        // 尝试六种操作

        vector<State> next_states = {

            {a_capacity, curr.b},  // 装满 A

            {curr.a, b_capacity},  // 装满 B

            {0, curr.b},  // 倒空 A

            {curr.a, 0},  // 倒空 B

            {curr.a - min(curr.a, b_capacity - curr.b), curr.b + min(curr.a, b_capacity - curr.b)},  // 从 A 向 B 倒水

            {curr.a + min(curr.b, a_capacity - curr.a), curr.b - min(curr.b, a_capacity - curr.a)},  // 从 B 向 A 倒水

        };



        for (State& next_state : next_states) {

            if (visited.count(next_state) == 0) {

                q.push(next_state);

                visited.insert(next_state);

            }

        }

    }



    cout << "False" << endl;

    return 0;

}

根据题意,给定两个水壶A和B的容量,以及目标水量C。可以使用三种操作:装满水壶,倒空水壶,将一个水壶的水倒入另一个水壶。目标是判断是否可以通过这些操作,得到目标水量C。我们可以使用图来建模这个问题。图的节点表示水壶的状态,每个节点由两个数字表示,分别表示水壶A和水壶B中的水量。边表示可行的操作。具体建模如下:

初始状态:(0, 0),表示两个水壶都是空的。

目标状态:(C, 0)、(0, C)或者(C-C, C),表示其中一个水壶中的水量达到目标水量C。

后根据问题描述和可行的操作,可以得到状态转移图,判断是否可实现,然后使用广度优先搜索(BFS)算法在状态转移图上进行搜索,从初始状态开始,逐步尝试可行的操作,直到达到目标状态。如果搜索过程中能够找到目标状态,则说明可以实现,否则无法实现。需要注意的点是,我们要使用队列来实现BFS算法,使用一个集合来记录已经访问过的状态,以避免重复搜索

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值