问题
在《⻁胆⻰威 3》这部电影中,恐怖分⼦在⼀个喷泉旁放置了炸弹,并提供 了⼀个 a=5 加仑的桶和⼀个 b=3 加仑的桶,如果拆弹⼈员能够利⽤这两个桶准 确的得到 c=4 加仑的⽔并放在⼀旁的秤上,炸弹就不会爆炸。
假定两个⽔壶 A 和 B,供⽔量不限。可以使⽤三种⽅法装⽔:
1 给⼀个⽔壶装⽔;
2 把⼀个⽔壶倒空;
3 从⼀个⽔壶倒进另⼀个⽔壶.
请采⽤图进⾏建模,获得状态转移图,并判断是否可以实现。
示例 1:
输⼊:a=5, b=3, c=4
输出:true
示例 2: 输⼊:a=2, b=6, c=5
输出:false
分析
这是一道典型的搜索类型的题目,我们采用 BFS 算法来搜索所有可能的状态,并尝试六种操作。通过在每个状态中记录两个桶中的水量,我们可以检查是否找到了目标状态,即 A 和 B 中的水量之和等于 4。如果找到了目标状态,则程序会输出解决方案,即 A 和 B 中的水量。如果没有找到目标状态,则程序会输出 "No solution found."
按照题目的例子,我们可以构造状态转移图来更好的理解题意
首先,操作的种类是固定的,总共就6种操作方式,我们只需要对每个阶段都执行一次这些操作,就能通过BFS算法判断有没有最优解,如图所示,由于并不是每次都需要把6个操作执行一次,这6个操作实际只需要执行最多两个,因为执行过的操作不会再执行一次,然后这6个操作又是分为对A和对B的操作,所以每次只需要3选2或1就行了。
代码和运行结果
#include <iostream>
#include <queue>
#include <unordered_set>
using namespace std;
struct State
{
int a, b;
bool operator==(const State& other) const {
return a == other.a && b == other.b;
}
};
namespace std {
template <>
struct hash<State> {
size_t operator()(const State& state) const {
return state.a * 10 + state.b;
}
};
}
int main() {
const int a_capacity = 5, b_capacity = 3, target = 4;
queue<State> q;
unordered_set<State> visited;
State initial_state = { 0, 0 };
q.push(initial_state);
visited.insert(initial_state);
while (!q.empty()) {
State curr = q.front();
q.pop();
if (curr.a + curr.b == target) {
cout << "True" << endl;
cout << "A: " << curr.a << ", B: " << curr.b << endl;
return 0;
}
// 尝试六种操作
vector<State> next_states = {
{a_capacity, curr.b}, // 装满 A
{curr.a, b_capacity}, // 装满 B
{0, curr.b}, // 倒空 A
{curr.a, 0}, // 倒空 B
{curr.a - min(curr.a, b_capacity - curr.b), curr.b + min(curr.a, b_capacity - curr.b)}, // 从 A 向 B 倒水
{curr.a + min(curr.b, a_capacity - curr.a), curr.b - min(curr.b, a_capacity - curr.a)}, // 从 B 向 A 倒水
};
for (State& next_state : next_states) {
if (visited.count(next_state) == 0) {
q.push(next_state);
visited.insert(next_state);
}
}
}
cout << "False" << endl;
return 0;
}
根据题意,给定两个水壶A和B的容量,以及目标水量C。可以使用三种操作:装满水壶,倒空水壶,将一个水壶的水倒入另一个水壶。目标是判断是否可以通过这些操作,得到目标水量C。我们可以使用图来建模这个问题。图的节点表示水壶的状态,每个节点由两个数字表示,分别表示水壶A和水壶B中的水量。边表示可行的操作。具体建模如下:
初始状态:(0, 0),表示两个水壶都是空的。
目标状态:(C, 0)、(0, C)或者(C-C, C),表示其中一个水壶中的水量达到目标水量C。
后根据问题描述和可行的操作,可以得到状态转移图,判断是否可实现,然后使用广度优先搜索(BFS)算法在状态转移图上进行搜索,从初始状态开始,逐步尝试可行的操作,直到达到目标状态。如果搜索过程中能够找到目标状态,则说明可以实现,否则无法实现。需要注意的点是,我们要使用队列来实现BFS算法,使用一个集合来记录已经访问过的状态,以避免重复搜索