异常数据检测 | Python实现Bayes贝叶斯时间序列异常数据检测

本文介绍了贝叶斯在线变点检测算法用于在线推理,适用于在线和离线信号处理,如过程控制、生物医学等领域。文章探讨了三种变点检测方法,包括贝叶斯在线检测、findchangepts函数和递归均值差最大化算法,强调了在信号分割中寻找统计特性变化的重要性,并讨论了如何评估这些变化的显著性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


文章概述

本文提出了一种用于在线推理的贝叶斯变点检测算法。与回顾性分割不同,我们关注的是因果预测滤波;只考虑已经观察到的数据,生成序列中下一个不可见数据的精确分布。


程序设计

# ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
import numpy as np
import math
import pandas as pd
import matplotli
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab建模攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值