拿金币:有一个N x N的方格,每一个格子都有一些金币,只要站在格子里就能拿到里面的金币。你站在最左上角的格子里,每次可以从一个格子走到它右边或下边的格子里。请问如何走才能拿到最多的金币。

这篇博客探讨了一个关于如何在 NxN 的网格中找到收集最多金币的路径的问题。作者首先提出了一种直觉性的解决方案,但指出这种方法在面对某些特定情况时可能会失效。然后,他们引入了动态规划的思想,通过在每个节点存储其上方或左边的最大值来优化路径选择,从而确保了在达到右下角时获得最大收益。这种方法避免了对未来步骤的预测,提高了算法的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

  有一个N x N的方格,每一个格子都有一些金币,只要站在格子里就能拿到里面的金币。你站在最左上角的格子里,每次可以从一个格子走到它右边或下边的格子里。请问如何走才能拿到最多的金币。

输入格式

  第一行输入一个正整数n。
  以下n行描述该方格。金币数保证是不超过1000的正整数。

输出格式

  最多能拿金币数量。

样例输入

3
1 3 3
2 2 2
3 1 2

样例输出

11

package com.test01.xyx.train;

import java.util.Scanner;

/**
 * @author yuxing
 * @create 2022-03-07-11:29
 * @content: 拿金币:有一个N x N的方格,每一个格子都有一些金币,只要站在格子里就能拿到里面的金币。
 *                 你站在最左上角的格子里,每次可以从一个格子走到它右边或下边的格子里。请问如何走才能拿到最多的金币。
 *
 *           存在漏洞如果按照这个1 2 3 进行操作,走的路径是13111,而我们的理想为 12311
 *                           3 1 1
 *                           1 1 1
 */
public class Test02 {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int a[][] = new int[n][n];
        for (int i = 0 ; i<n ;i++ ){
            for (int j = 0 ;j < n ; j++){
                a[i][j] = scanner.nextInt();
            }
        }
        int sum = a[0][0];
        System.out.println(a[0][1]);
        for (int m=1,i = 0,j=0; m<2*n-1 ; m++){
            if (j+1<=n-1&&i+1<=n-1){       //没有达到边界
                if (a[i+1][j]>a[i][j+1]){   //向下移动
                    sum = sum + a[i+1][j];
                    System.out.println(a[i+1][j]);
                    System.out.println("a["+i+"]["+j+"]"+sum);
                    i++;
                }else {     //向右移动
                    sum = sum + a[i][j+1];
                    System.out.println("a["+i+"]["+j+"]"+sum);
                    j++;
                }
            }else if (i==n-1){
                sum = sum + a[i][j+1];
                System.out.println("a["+i+"]["+j+"]"+sum);
                j++;
            }else if (j==n-1){
                sum = sum + a[i+1][j];
                System.out.println("a["+i+"]["+j+"]"+sum);
                i++;
            }
        }
        System.out.println(sum);
    }
}

 

但是有个问题如果出现下列情况,不能识别:原因是计算机无法预测下下步、下下下步等等的操作。

因此这种思想并不适合该题,我们发现无论走那条路,最后都到达了矩形的右下角,那么他一定经过右下角的上面或者左面,经过上面或者左面取决于上面的总和大还是做左边的总和大,那么依次类推,我们可以让每个点存放他的左边或者上面的最大值加上它本身。而第一行和第一列中的每个点则存放他的左边的或者上边的值加上它本身的值。代码如下:

package com.test01.xyx.train;

import java.util.Random;
import java.util.Scanner;

/**
 * @author yuxing
 * @create 2022-03-07-13:47
 * @content:
 */
public class Test03 {
    public static void main(String[] args) {
                Scanner input = new Scanner(System.in);
                int n =input.nextInt();
                int a[][] = new int[n][n];
                for (int i = 0; i <n; i++) {
                    for (int j = 0; j <n; j++) {
                        a[i][j] = input.nextInt();
                    }
                }
                for (int i = 0; i < n; i++) {
                    for (int j = 0; j < n; j++) {
                        if(i==0&&j>0){  //第一行
                            a[i][j]=a[i][j]+a[i][j-1];
                        }
                        else if(j==0&&i>0){ //第一列
                            a[i][j]=a[i][j]+a[i-1][j];
                        }
                        else if(i>0){ //中间
                            a[i][j]=a[i][j]+Math.max(a[i-1][j],a[i][j-1]);
                        }
                    }
                }
           System.out.println(a[n-1][n-1]);//输出最后一个值
    }
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值