问题描述
有一个N x N的方格,每一个格子都有一些金币,只要站在格子里就能拿到里面的金币。你站在最左上角的格子里,每次可以从一个格子走到它右边或下边的格子里。请问如何走才能拿到最多的金币。
输入格式
第一行输入一个正整数n。
以下n行描述该方格。金币数保证是不超过1000的正整数。
输出格式
最多能拿金币数量。
样例输入
3
1 3 3
2 2 2
3 1 2样例输出
11
package com.test01.xyx.train;
import java.util.Scanner;
/**
* @author yuxing
* @create 2022-03-07-11:29
* @content: 拿金币:有一个N x N的方格,每一个格子都有一些金币,只要站在格子里就能拿到里面的金币。
* 你站在最左上角的格子里,每次可以从一个格子走到它右边或下边的格子里。请问如何走才能拿到最多的金币。
*
* 存在漏洞如果按照这个1 2 3 进行操作,走的路径是13111,而我们的理想为 12311
* 3 1 1
* 1 1 1
*/
public class Test02 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int a[][] = new int[n][n];
for (int i = 0 ; i<n ;i++ ){
for (int j = 0 ;j < n ; j++){
a[i][j] = scanner.nextInt();
}
}
int sum = a[0][0];
System.out.println(a[0][1]);
for (int m=1,i = 0,j=0; m<2*n-1 ; m++){
if (j+1<=n-1&&i+1<=n-1){ //没有达到边界
if (a[i+1][j]>a[i][j+1]){ //向下移动
sum = sum + a[i+1][j];
System.out.println(a[i+1][j]);
System.out.println("a["+i+"]["+j+"]"+sum);
i++;
}else { //向右移动
sum = sum + a[i][j+1];
System.out.println("a["+i+"]["+j+"]"+sum);
j++;
}
}else if (i==n-1){
sum = sum + a[i][j+1];
System.out.println("a["+i+"]["+j+"]"+sum);
j++;
}else if (j==n-1){
sum = sum + a[i+1][j];
System.out.println("a["+i+"]["+j+"]"+sum);
i++;
}
}
System.out.println(sum);
}
}
但是有个问题如果出现下列情况,不能识别:原因是计算机无法预测下下步、下下下步等等的操作。
因此这种思想并不适合该题,我们发现无论走那条路,最后都到达了矩形的右下角,那么他一定经过右下角的上面或者左面,经过上面或者左面取决于上面的总和大还是做左边的总和大,那么依次类推,我们可以让每个点存放他的左边或者上面的最大值加上它本身。而第一行和第一列中的每个点则存放他的左边的或者上边的值加上它本身的值。代码如下:
package com.test01.xyx.train;
import java.util.Random;
import java.util.Scanner;
/**
* @author yuxing
* @create 2022-03-07-13:47
* @content:
*/
public class Test03 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n =input.nextInt();
int a[][] = new int[n][n];
for (int i = 0; i <n; i++) {
for (int j = 0; j <n; j++) {
a[i][j] = input.nextInt();
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if(i==0&&j>0){ //第一行
a[i][j]=a[i][j]+a[i][j-1];
}
else if(j==0&&i>0){ //第一列
a[i][j]=a[i][j]+a[i-1][j];
}
else if(i>0){ //中间
a[i][j]=a[i][j]+Math.max(a[i-1][j],a[i][j-1]);
}
}
}
System.out.println(a[n-1][n-1]);//输出最后一个值
}
}