C语言做拿金币(亲测使用)

【问题描述】

    有一个N x N的方格,每一个格子都有一些金币,只要站在格子里就能拿到里面的金币。你站在左上角的格子里,每次可以从一个格子走到它右边或下边的格子里,请问如何走才能拿到更多的金币。

【输入格式】

    第一行输入一个正整数n。

    一下n行描述该方格。金币数是保证不超过1000的正整数。

【输出格式】

  最多能拿金币数量。

【样例输入】

3

1 3 3

2 2 2

3 1 2

样例输出

11

【数据规模和约定】

n<=1000

【思路分析】

该题需使用动态规划(DP),先建立两个数组

num[]][]:表示每个方格的金币数。

dp[][]:表示走到该方格能拿到的最大金币数。

First:初始化dp[][]数组的最上面一行和最左边一行。(具体看代码,代码有注释。)

Second:动态规划dp[][]数组剩下的n-1方阵。

#include<stdio.h>
int main() {
	int n;
	scanf("%d", &n);
	static int num[1000][1000], dp[1000][1000];//这里需用到静态建立数组,要不然栈中的内存不支持1000的二维数组规模。栈中最大好像只能接收到300多的规模。
	int i, j;
	for (i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			scanf("%d", &num[i][j]);
		}
	}
		dp[0][0] = num[0][0];//先初始化你的起点
		i = 1;
		j = 0;
		while (i < n) {
			dp[i][j] = dp[i - 1][j] + num[i][j];
			i++;
		}//初始化dp[][]数组最左边一行,这些只是固定的,只能有一种走法
		i = 0;
		j = 1;
		while (j < n) {
			dp[i][j] = dp[i][j - 1] + num[i][j];
			j++;
		}//初始化dp[][]数组最上边一行,这些也是固定的,只能有一种走法
		for (i = 1; i < n; i++) {
			for (j = 1; j < n; j++) {
				int x = (dp[i][j-1]>=dp[i-1][j]?dp[i][j-1]:dp[i-1][j]);//该方格只能由上边和左边的方格走到,判断走到那个方格所拥有金币数量最多,就选择哪一个方格作为其上一步的方格
				dp[i][j] = num[i][j] + x;//这里就是走到该位置所拥有的最多金币数
			}
		}
		printf("%d",dp[n-1][n-1]);
	return 0;
}

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零维展开智子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值