堆
1、作用:维护一个数组集合
2、堆是一棵(完全)二叉树,长得非常平衡,除最后一层节点,所有节点均不为空,最后一层节点从左向右排列,根节点小于等于左右两个子节点,即小根堆。
3、树的操作
(1)存储:用一个一维数组存储树,下标从1开始。其中元素x 的左儿子为 2x,x 的右儿子为 2x + 1.
down(int x)//大的元素,往下沉
{
//t表示该元素与它的左、右儿子相比最小的元素,初始化为它自身
int t = x;
//若左二子小于它,则最小的数为左二子
if (x * 2 <= size && h[x * 2] < h[t])
t = x * 2;
//若右儿子小于它,则最小的数为右儿子
if (x * 2 + 1 <= size && h[x * 2 + 1] < h[t])
t = x * 2 + 1;
//如果它本身不是最小的数,则往下沉,继续down()操作
if (x != t)
{
swap(h[x], h[t]);
down(t);
}
}
up(x)//小的元素,往上浮
{
//如果比父节点大,就交换位置,上浮
while (x / 2 && h[x / 2] > h[x])
{
swap(h[x / 2], h[x]);
x /= 2;
}
}
(2)5个基本操作
heap表示堆,size表示大小
- 插入一个数 heap[++size] = x; up(size);
- 求集合当中的最小值 heap[1];
- 删除最小值 heap[1] = heap[size]; size–; down(1);
- 删除任意一个元素 heap[k] = heap[size]; size–; down(k); up(k); //down和up只会执行其中一个
- 修改任意一个元素 heap[K] = x; down(k); up(k);
4、堆排序
输入一个长度为 n 的整数数列,从小到大输出前 m 小的数。
【输入格式】
第一行包含整数 n 和 m。
第二行包含 n 个整数,表示整数数列。
【输出格式】
共一行,包含 m 个整数,表示整数数列中前 m 小的数。
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n, m;
int h[N], size;
void down(int x)//跟两个儿子比较大小
{
int t = x; //t表示最小的数
//比较三个数的大小
if (x * 2 <= size && h[x * 2] < h[t])
t = x * 2;
if (x * 2 + 1 <= size && h[x * 2 + 1] < h[t])
t = x * 2 + 1;
//判断大小并交换,继续down()操作
if (x != t)
{
swap(h[x], h[t]);
down(t);
}
}
void up (int x)//只需要跟一个父亲比较大小就行
{
//如果比父节点大,就交换位置,上浮
while (x / 2 && h[x / 2] > h[x])
{
swap(h[x / 2], h[x]);
x /= 2;
}
}
int main()
{
scanf("%d%d", &n, &m);
//读入数据,存储在一维数组中
for (int i = 1; i <= n; i++)
scanf("%d", &h[i]);
size = n;
for (int i = n / 2; i; i--) //建堆的方式
down(i);
while (m--)
{
printf("%d ", h[1]); //输出堆顶(最小值)
h[1] = h[size]; //用最后一个数覆盖第一个数
size--; //长度减一,间接地删除堆顶
down(1); //让覆盖后的数往下沉
}
return 0;
}
5、模拟堆
维护一个集合,初始时集合为空,支持如下几种操作:
I x
,插入一个数 x;PM
,输出当前集合中的最小值;DM
,删除当前集合中的最小值(数据保证此时的最小值唯一);D k
,删除第 k 个插入的数;C k x
,修改第 k 个插入的数,将其变为 x;
现在要进行 N 次操作,对于所有第 2 个操作,输出当前集合的最小值。
【输入格式】
第一行包含整数 N。
接下来 N 行,每行包含一个操作指令,操作指令为 I x
,PM
,DM
,D k
或 C k x
中的一种。
【输出格式】
对于每个输出指令 PM
,输出一个结果,表示当前集合中的最小值。
每个结果占一行。
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 100010;
int h[N], size; //分别表示堆和大小
int ph[N];//存放的是第k个插入的位置在堆里的下标
int hp[N];//存放的是堆里的当前元素是第几个插入的
void heap_swap(int a, int b) //定义一个堆交换操作
{
swap(ph[hp[a]], ph[hp[b]]);
swap(hp[a], hp[b]);
swap(h[a], h[b]);
}
void down(int u) //大的数下沉
{
int t = u;
if (u * 2 <= size && h[u * 2] < h[t])
t = u * 2;
if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t])
t = u * 2 + 1;
if (u != t)
{
heap_swap(u, t);
down(t);
}
}
void up(int u) //小的数上浮
{
while (u / 2 && h[u / 2] > h[u])
{
heap_swap(u / 2, u);
u /= 2;
}
}
int main()
{
int n, m = 0;
scanf("%d", &n);
while (n--)
{
char op[10];
int k, x;
scanf("%s", op);
if (!strcmp(op, "I"))//插入一个数x
{
scanf("%d", &x);
size++;
m++;
ph[m] = size, hp[size] = m;
h[size] = x;
up(size);
}
else if (!strcmp(op, "PM")) //输出最小的数
printf("%d\n", h[1]);
else if (!strcmp(op, "DM")) //删除最小的数
{
heap_swap(1, size);
size--;
down(1);
}
else if (!strcmp(op, "D")) //删除第k个插入的数
{
scanf("%d", &k);
k = ph[k];
heap_swap(k, size);
size--;
down(k), up(k);
}
else if(!strcmp(op, "C")) //修改第k个插入的数,将其变为x
{
scanf("%d%d", &k, &x);
k = ph[k];
h[k] = x;
down(k), up(k);
}
}
return 0;
}