POJ-3279. Fliptile(递推+搜索)
题目描述
农场主约翰知道,一头智力得到满足的奶牛是一头快乐的奶牛,它会产更多的奶。他为奶牛安排了一项脑力活动,让它们摆弄一个 M × N M × N M×N 的方格 ( 1 ≤ M ≤ 15 ; 1 ≤ N ≤ 15 ) (1 ≤ M ≤ 15;1 ≤ N ≤ 15) (1≤M≤15;1≤N≤15),每个方格的一面是黑色的,另一面是白色的。
正如人们所猜测的那样,当翻转一块白色瓷砖时,它就会变成黑色;当翻转一块黑色瓷砖时,它就会变成白色。当奶牛翻转瓷砖,使每块瓷砖的白色面朝上时,它们就会得到奖励。不过,奶牛的蹄子比较大,当它们试图翻转某块瓷砖时,也会翻转所有相邻的瓷砖(与被翻转瓷砖共用一条完整边缘的瓷砖)。由于翻转很累,奶牛们希望尽量减少翻转的次数。
帮助奶牛确定所需的最少翻转次数,以及为达到最少翻转次数而需要翻转的位置。如果有多种方法都能以最少的翻转次数完成任务,则在输出中以字符串形式返回词序最少的一种方法。如果任务不可能完成,则打印一行并注明 “IMPOSSIBLE”。
输入:
第 1 1 1 行 两个空格分隔的整数: M M M 和 N N N
第 2... M + 1 2...M+1 2...M+1 行: 第 i + 1 i+1 i+1 行描述网格第 i i i 行的颜色(从左到右),用 N N N 个空格分隔的整数表示, 1 1 1 表示黑色, 0 0 0 表示白色
输出:
第 1... M 1...M 1...M 行:每行包含 N N N 个空格分隔的整数,每个整数指定特定位置的翻转次数。
样例输入:
4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
样例输出:
0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0
题意
给定一个 01 01 01 矩阵,可以任意选择翻转一个点,使得 0 0 0 变成 1 1 1 , 1 1 1 变成 0 0 0 ,并且该点上下左右的四个点会按照同样的规律进行翻转,现在问最少需要翻转多少次,可以使得整个矩阵都是 0 0 0 ,如果有多种方式,请输出字典序最小的一种,若无法达到则输出 “impossible”。
思路
首先,一个点翻转两次及以上是没有意义的。因为,翻转两次等于不反转,翻转奇数次等于翻转一次,所以我们只需要考虑翻转一次的情况。
那么,每个点只有翻与不翻两种情况,直接枚举的话, n ∗ ( 2 n ) n*(2^n) n∗(2n) 会超时,所以需要优化枚举方式。
这里设翻转某个点 (i, j)
的操作为 turn(x, y)
,如果逐个枚举的话,当翻转当前点的时候,会使上一行也翻转,从而破坏上一行的状态,所以只能用下一行去改变上一行的状态。
并且,操作的顺序也不会影响最终的结果。那么,若当前行某一点 (i, j)
的状态为 1
,那就可以用所在列的下一行 (i + 1, j)
去执行 turn
操作,使得 (i, j)
的状态变为 0
。
综上,我们可以先确定第一行的操作方案,枚举第一行所有的操作,再依此递推后面行数的情况,最后判断最后一行的状态是否全部变成了 0
即可。
同时,我们使用二进制枚举第一行的话,还可以保证是按字典序来枚举的,也符合题目要求。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define INF 0x3f3f3f3f
#define IOS ios::sync_with_stdio(false), cin.tie(0);
using namespace std;
const int N = 20;
// 翻转数字上下左右,1->0,0->1,需要将所有的数都变成0
int n, m;
int g[N][N], backup[N][N]; // 原数组,备份数组(备份数组用来恢复原来的状态)
int temp[N][N]; // 临时状态数组(保存每次枚举时当前数组的状态)
int ans[N][N]; // 答案数组
int dx[] = {0, -1, 0, 1, 0};
int dy[] = {0, 0, 1, 0, -1};
int res;
// 转换瓷砖状态
void turn(int x, int y)
{
for (int i = 0; i < 5; i++){
int xx = x + dx[i], yy = y + dy[i];
if (xx >= 0 && xx < n && yy >= 0 && yy < m){
g[xx][yy] ^= 1; // 异或,变成相反数
// if (g[xx][yy] == 1) g[xx][yy] = 0;
// else g[xx][yy] = 1;
}
}
temp[x][y] = 1;
}
void work()
{
//先枚举第一行的所有情况,使用二进制枚举,一共2^m种
for (int k = 0; k < 1 << m; k++)
{
int cnt = 0;
memcpy(backup, g, sizeof g); //备份原数组
memset(temp, 0, sizeof temp); //每次都需要初始化临时数组
// 对第1行处理
for (int j = 0; j < m; j++)
if (k >> j & 1)
{
cnt++;
turn(0, j);
}
// 逐个枚举第2~n-1行
for (int i = 0; i < n - 1; i++)
for (int j = 0; j < m; j++)
if (g[i][j] == 1)
{
cnt++;
turn(i + 1, j); // 对下一行处理
}
bool flag = true;
for (int j = 0; j < m; j++) // 判断最后一行是否合法
if (g[n - 1][j] == 1)
{
flag = false;
break;
}
// 判断最小操作次数
if (flag && cnt < res){
res = cnt;
memcpy(ans, temp, sizeof temp); // 更新答案数组
}
// 枚举完一种情况后还原成初始状态
memcpy(g, backup, sizeof backup);
}
}
int main()
{
IOS;
res = INF;
cin >> n >> m;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
cin >> g[i][j];
work();
if (res == INF) cout << "IMPOSSIBLE" << endl;
else {
for (int i = 0; i < n; i++){
for (int j = 0; j < m; j++)
cout << ans[i][j] << ' ';
cout << endl;
}
}
return 0;
}