由于循环调用tensorflow.keras.predict导致的内存泄漏问题

文章讲述了在使用TensorFlow进行强化学习模型训练时遇到的内存泄漏问题,通过循环调用`model.predict`导致内存持续增加。尝试将输入转换为tensor或清理session并未解决问题,最终发现使用`predict_on_batch`代替`predict`能有效避免内存泄漏,同时也提高了执行效率。
摘要由CSDN通过智能技术生成

问题描述

之前在进行强化学习模型训练的过程中无意间发现了这个问题,于是有了这个博客来记录一下。

首先就是出现内存泄漏的一段代码:

import tensorflow as tf
import numpy as np

# 首先简单搭个模型
model = tf.keras.Sequential([
    tf.keras.layers.Input(shape=(128,)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(128, activation='relu')
])

while True:  # 不断进行循环测试溢出
    inputX = np.random.randn(128 * 10).reshape((10, 128))
    model.predict(inputX)

初始内存如下:

随着循环的进行,pycharm占用的内存随之增加。

但是在上面的代码中并没有需要增加内存占用的部分。

可以看出model.predict的反复执行导致了系统内存泄漏。

解决方法

我查阅了许多的相关资料,有的说将模型输入X转为tensor(张量)在抛进模型的;有的说调用。tf.keras.backen.clear_session的。但经过我的尝试都是无济于事的。

最终经过我的尝试,发现将predict换成predict_on_batch可以有效地解决这个问题,同时在执行速度上来说predict_on_batch也是比predict要快的。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值