ModuleNotFoundError: No module named ‘torch.utils._pytree‘

博客主要围绕报错“ModuleNotFoundError: No module named 'torch.utils._pytree'”展开,给出两种解决办法。一是transformers版本不对,可通过pip install transformers==4.28.0 -i https://pypi.tuna.tsinghua.edu.cn/simple解决;二是pytorch版本不对,需卸载重装对应版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from transformers import BertTokenizerFast
from torch.utils.data import Dataset
from transformers import PreTrainedTokenizerFast
报错:ModuleNotFoundError: No module named 'torch.utils._pytree'
解决办法1.原因:transformers的版本不对

pip install transformers==4.28.0 -i https://pypi.tuna.tsinghua.edu.cn/simple即可(亲测有用)

pytorch - ModuleNotFoundError: No module named 'torch.utils._pytree' - Stack Overflow

解决办法2:pytorch版本不对

当前环境下安装的pytorch版本为1.7.1,而报错的模块为1.8.0以后引入,故需要将现存的pytorch卸载重新安装对应版本。(我未尝试此方法,可查看下面链接博客)

ModuleNotFoundError: No module named ‘torch.utils._pytree‘_modulenotfounderror: no module named 'torch.utils.-CSDN博客

### 解决 `No module named 'torch.utils._pytree'` 错误 当遇到 `ModuleNotFoundError: No module named 'torch.utils._pytree'` 的错误时,这通常是因为 PyTorch 版本过低或环境配置不当所致。为了有效解决此问题并确保所有必要的依赖项都已正确安装,可以采取以下措施: #### 验证当前PyTorch版本 首先确认现有环境中PyTorch的具体版本号,因为 `_pytree` 模块是从特定版本开始被加入到库中的。 ```bash python -c "import torch; print(torch.__version__)" ``` 如果显示的版本低于1.8.0,则确实缺少该模块[^4]。 #### 更新PyTorch及其相关包至最新稳定版 通过pip工具来升级PyTorch以及其配套使用的 torchvision 库到最新的稳定版本,从而获取包含所需功能的新特性支持。 ```bash pip install --upgrade torch torchvision torchaudio ``` 对于某些情况下可能还需要指定CUDA版本或其他平台特定参数,请访问官方文档以获得最准确的命令行指令[^3]。 #### 创建独立虚拟环境重新安装 为了避免影响其他项目所依赖的老版本软件包,在新的干净环境下单独部署可能是更好的选择。使用 conda 或 venv 工具创建一个新的 Python 虚拟环境后再执行上述安装操作。 ```bash conda create -n my_torch_env python=3.9 conda activate my_torch_env pip install torch torchvision torchaudio ``` 或是采用venv方式: ```bash python -m venv ./my_venv/ source ./my_venv/bin/activate # Linux/MacOS ./my_venv/Scripts/activate.bat # Windows pip install torch torchvision torchaudio ``` 完成这些步骤之后再次测试是否能够成功导入所需的模块而不再报错。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值