目录
A、新春游戏之数学系列
数据范围有蹊跷:

a数组内元素之和不超过5*10^7
可以那么可知道将ai去重后的元素个数一定不会超过sqrt(5*10^7)。sqrt(x)表示x的开方。
假如去重后的元素个数为m,统计好每个元素出现的次数,那么就可以用二维循环去做。
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define ll long long
const int N=1e6+10;
int n,m,a[N],b[N],c[N],d[N];
const int mod=998244353;
void solve()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
sort(a+1,a+n+1);
for(int i=1;i<=n;i++)
{
if(a[i]!=a[i-1])
{
m++;
b[m]=a[i];
int x=a[i];
while(x)
{
d[m]+=(x%2);
x/=2;
}
}
c[m]++;
}
int sum=0;
for(int i=1;i<=m;i++)
{
for(int j=1;j<=m;j++)
{
sum=(sum+__gcd(b[i],b[j])*(d[i]+d[j])%mod*(c[i]*c[j])%mod)%mod;
}
}
cout<<sum;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int t=1;
//cin>>t;
while(t--)solve();
return 0;
}
B、团圆饭
官方题解做的很好:

这里我是打表发现斐波那契规律的。对于输入只有一个数或者两个数的题目,我们可以先用类似暴力的方法求出小范围的答案,肉眼观察出答案和输入数据的规律,从而发现公式。这里发先斐波那契规律后,由于n很大,所以必须要用矩阵快速幂优化。矩阵快速幂可以解决f(n)=a*f(n-1)+b*f(n-2)+c*f(n-3)....的问题。当n特别大时可以直接用矩阵快速幂解决。
矩阵快速幂为ACM模板,打ACM需要用,蓝桥杯pta不考,可以稍作了解。
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define endl "\n"
#define PII pair<int,int>
#define int long long
const int N=10;
const int INF=1e18;
const int m=1e9+7;
int A[N][N] = // 上述矩阵 A
{
{1,1,0},
{1,0,0},
{0,1,0}
};
int S[N] = {3,2,1}; // 上述矩阵 S(转置)
void multi(int A[], int B[][N]) // 计算方阵 B 乘向量 A,并将结果储存在 A 中
{
int ans[N] = {0};
for (int i = 0; i < N; i ++ )
for (int j = 0; j < N; j ++ )
ans[i] += A[j] * B[i][j] % m;
for (int i = 0; i < N; i ++ )
A[i] = ans[i] % m;
}
void multi(int A[][N], int B[][N]) // 计算方阵 A * B,并将结果储存在 A 中
{
int ans[N][N] = {0};
for (int i = 0; i < N; i ++ )
for (int j = 0; j < N; j ++ )
for (int k = 0; k < N; k ++ )
ans[i][j] += A[i][k] * B[k][j] % m;
for (int i = 0; i < N; i ++ )
for (int j = 0; j < N; j ++ )
A[i][j] = ans[i][j] % m;
}
void solve()
{
int n;
cin>>n;
while(n)
{
if(n&1)multi(S,A);
multi(A,A);
n>>=1;
}
cout<<(S[2]+m)%m<<endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int T=1;
// cin>>T;
while(T--)solve();
return 0;
}
C、龙年吉祥
条件判断即可。
代码:
#include<bits/stdc++.h>
using namespace std;
#define endl "\n"
#define PII pair<int,int>
#define int long long
const int N=1e6+10;
const int INF=1e18;
void solve()
{
int n;
cin>>n;
if(n>=0)
{
n%=12;
if(n==0)cout<<"Dragon"<<endl;
else if(n==1)cout<<"Snake"<<endl;
else if(n==2)cout<<"Horse"<<endl;
else if(n==3)cout<<"Goat"<<endl;
else if(n==4)cout<<"Monkey"<<endl;
else if(n==5)cout<<"Rooster"<<endl;
else i

最低0.47元/天 解锁文章
598

被折叠的 条评论
为什么被折叠?



