线性代数知识点琐记

  • 对分块矩阵进行第三类初等变换不改变方阵的行列式!!!
初等变换有三类,不同的初等变换对行列式值的影响不同。
1、第一类初等变换(交换矩阵的两行):行列式值变号;
2、第二类初等变换(以一个非零数k乘矩阵的某一行所有元素):行列式值变k倍;
3、第三类初等变换(把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素):行列式值不变。
这三种初等变换都不会改变一个方阵A的行列式的非零性。
  • A A A正交矩阵, 若有向量内积 ( a , b ) = k (a,b)=k (a,b)=k , 则 ( A a , A b ) = k (Aa,Ab)=k (Aa,Ab)=k .
  • A A A为 m × n 矩阵, R(A) = r, 则齐次线性方程组 A T X = 0 A^T X = 0 ATX=0 的解空间维数为 n − r n-r nr,n为未知数的个数。
  • [[线性代数]]正定矩阵
  • 二次曲面类型判断二次曲面(wikipedia.org)
  • ![[Pasted image 20231213221756.png]]
    • 提示:特征值
  • 向量组判断是否等价等价向量组 (baidu.com)
	向量组等价的基本判定是:两个向量组可以互相[线性表示]
需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。
向量组A:a1,a2,…am与向量组B:β1,β2,…βn的等价秩相等条件是
r(A)=r(B)=r(A,B).
其中A和B是向量组A和B所构成的[矩阵]
  • n 元线性方程组的解
    • R ( A ) = R ( B ) = n R(A)=R(B)=n R(A)=R(B)=n<=>唯一解
    • R ( A ) = R ( B ) < n R(A)=R(B)<n R(A)=R(B)<n <=>无数解
    • R ( A ) ! = R ( B ) R(A) !=R(B) R(A)!=R(B)<=>无解
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值