- 对分块矩阵进行第三类初等变换不改变方阵的行列式!!!
初等变换有三类,不同的初等变换对行列式值的影响不同。
1、第一类初等变换(交换矩阵的两行):行列式值变号;
2、第二类初等变换(以一个非零数k乘矩阵的某一行所有元素):行列式值变k倍;
3、第三类初等变换(把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素):行列式值不变。
这三种初等变换都不会改变一个方阵A的行列式的非零性。
- 设
A
A
A为正交矩阵, 若有向量内积
(
a
,
b
)
=
k
(a,b)=k
(a,b)=k , 则
(
A
a
,
A
b
)
=
k
(Aa,Ab)=k
(Aa,Ab)=k .
- 设
A
A
A为 m × n 矩阵, R(A) = r, 则齐次线性方程组
A
T
X
=
0
A^T X = 0
ATX=0 的解空间维数为
n
−
r
n-r
n−r,n为未知数的个数。
- [[线性代数]]正定矩阵
- 二次曲面类型判断二次曲面(wikipedia.org)
- ![[Pasted image 20231213221756.png]]
- 向量组判断是否等价等价向量组 (baidu.com)
向量组等价的基本判定是:两个向量组可以互相[线性表示]
需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。
向量组A:a1,a2,…am与向量组B:β1,β2,…βn的等价秩相等条件是
r(A)=r(B)=r(A,B).
其中A和B是向量组A和B所构成的[矩阵]
- n 元线性方程组的解
-
R
(
A
)
=
R
(
B
)
=
n
R(A)=R(B)=n
R(A)=R(B)=n<=>唯一解
-
R
(
A
)
=
R
(
B
)
<
n
R(A)=R(B)<n
R(A)=R(B)<n <=>无数解
-
R
(
A
)
!
=
R
(
B
)
R(A) !=R(B)
R(A)!=R(B)<=>无解