Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式的全文搜索引擎,基于restful web接口。
Windows下的安装
下载Elasticsearch 6.2.2的zip包,并解压到指定目录,下载地址:https://www.elastic.co/cn/downloads/past-releases/elasticsearch-6-2-2
安装中文分词插件,在elasticsearch-6.2.2\bin目录下执行以下命令;(在目录结构前输入cmd空格,即可直接进入cmd)
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.2.2/elasticsearch-analysis-ik-6.2.2.zip
运行bin目录下的elasticsearch.bat启动Elasticsearch;
下载Kibana,作为访问Elasticsearch的客户端,下载6.2.2版本的zip包,并解压到指定目录,
下载地址:https://artifacts.elastic.co/downloads/kibana/kibana-6.2.2-windows-x86_64.zip
版本需对应,否则可能出现版本冲突
运行bin目录下的kibana.bat,启动Kibana的用户界面
访问http://localhost:5601 即可打开Kibana的用户界面:
选择Dev Tools 可输入ES语句操作ES
相关概念
-
Near Realtime(近实时):Elasticsearch是一个近乎实时的搜索平台,这意味着从索引文档到可搜索文档之间只有一个轻微的延迟(通常是一秒钟)。
-
Cluster(集群):群集是一个或多个节点的集合,它们一起保存整个数据,并提供跨所有节点的联合索引和搜索功能。每个群集都有自己的唯一群集名称,节点通过名称加入群集。
-
Node(节点):节点是指属于集群的单个Elasticsearch实例,存储数据并参与集群的索引和搜索功能。可以将节点配置为按集群名称加入特定集群,默认情况下,每个节点都设置为加入一个名为
elasticsearch
的群集。 -
Index(索引):索引是一些具有相似特征的文档集合,类似于MySql中数据库的概念。
-
Type(类型):类型是索引的逻辑类别分区,通常,为具有一组公共字段的文档类型,类似MySql中表的概念。
注意
:在Elasticsearch 6.0.0及更高的版本中,一个索引只能包含一个类型。 -
Document(文档):文档是可被索引的基本信息单位,以JSON形式表示,类似于MySql中行记录的概念。
-
Shards(分片):当索引存储大量数据时,可能会超出单个节点的硬件限制,为了解决这个问题,Elasticsearch提供了将索引细分为分片的概念。分片机制赋予了索引水平扩容的能力、并允许跨分片分发和并行化操作,从而提高性能和吞吐量。
-
Replicas(副本):在可能出现故障的网络环境中,需要有一个故障切换机制,Elasticsearch提供了将索引的分片复制为一个或多个副本的功能,副本在某些节点失效的情况下提供高可用性。
集群状态查看
GET /_cat/health?v
查看节点状态 GET /_cat/nodes?v
查看所有索引信息 GET /_cat/indices?v
引操作索
创建索引并查看;
删除索引 DELETE /customer
文档操作
在索引中添加文档;
PUT /customer/doc/1
{
"name": "John Doe"
}
查看索引中的文档
GET /customer/doc/1
修改索引中的文档:
POST /customer/doc/1/_update
{
"doc": { "name": "Jane Doe" }
}
删除索引中的文档
DELETE /customer/doc/1
对索引中的文档进行批量操作
POST /customer/doc/_bulk
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }
数据搜索
需要准备数据,使用的是银行账户表的数据,数据结构如下
{
"account_number": 0,
"balance": 16623,
"firstname": "Bradshaw",
"lastname": "Mckenzie",
"age": 29,
"gender": "F",
"address": "244 Columbus Place",
"employer": "Euron",
"email": "bradshawmckenzie@euron.com",
"city": "Hobucken",
"state": "CO"
}
访问https://github.com/macrozheng/mall-learning/blob/master/document/json/accounts.json 下载数据
之后直接使用批量操作来导入数据
POST /bank/account/_bulk
.......下载的数据
GET /_cat/indices?v 之后查看索引
最简单的搜索,使用
match_all
来表示,例如搜索全部;GET /bank/_search
{
"query": { "match_all": {} }
}
分页搜索,
from
表示偏移量,从0开始,size
表示每页显示的数量;GET /bank/_search
{
"query": { "match_all": {} },
"from": 0,
"size": 10
}
搜索排序,使用
sort
表示,例如按balance
字段降序排列;GET /bank/_search
{
"query": { "match_all": {} },
"sort": { "balance": { "order": "desc" } }
}
搜索并返回指定字段内容,使用
_source
表示,例如只返回account_number
和balance
两个字段内容:GET /bank/_search
{
"query": { "match_all": {} },
"_source": ["account_number", "balance"]
}
条件搜索,使用
match
表示匹配条件,例如搜索出account_number
为20
的文档:GET /bank/_search
{
"query": {
"match": {
"account_number": 20
}
}
}
参考macrozheng 开源项目ES文档