在MindSearch中使用SiliconCloud:全面指南**

随着硅基流动(SiliconFlow)提供的InternLM2.5-7B-Chat服务的免费开放,我们迎来了MindSearch部署的全新篇章。这一服务的免费提供,不仅极大地降低了部署门槛,还为MindSearch的使用者带来了纯CPU版本的便利。本文将为您详细介绍如何利用硅基流动的API来部署MindSearch。

快速开始

首先,您需要访问硅基流动的官方网站并注册一个账号。如果您已经注册过,直接登录即可。

  1. 注册/登录硅基流动账号

    访问 硅基流动云平台 进行注册或登录。

  2. 获取API Key

    完成注册后,前往 API密钥管理 页面。在这里,您需要创建一个新的API密钥并复制它,以便后续使用。

    API密钥创建

配置MindSearch

硅基流动的API接口与OpenAI的API接口完全一致,这使得配置过程变得异常简单。首先,您需要克隆MindSearch到本地,并安装所需的依赖项。具体的安装指南可以参考 MindSearch的GitHub仓库

接下来,您需要修改MindSearch的配置文件,以便接入硅基流动的API。

  1. 修改配置文件

    打开/path/to/MindSearch/mindsearch/models.py文件,并添加以下配置:

    internlm_silicon = dict(type=GPTAPI,
                           model_type='internlm/internlm2_5-7b-chat',
                           key=os.environ.get('SILICON_API_KEY', 'YOUR SILICON API KEY'),
                           openai_api_base='https://api.siliconflow.cn/v1/chat/completions',
                           meta_template=[
                               dict(role='system', api_role='system'),
                               dict(role='user', api_role='user'),
                               dict(role='assistant', api_role='assistant'),
                               dict(role='environment', api_role='system')
                           ],
                           top_p=0.8,
                           top_k=1,
                           temperature=0,
                           max_new_tokens=8192,
                           repetition_penalty=1.02,
                           stop_words=['<|im_end|>'])
    

启动MindSearch

配置完成后,您可以开始启动MindSearch。

  1. 启动后端

    设置硅基流动的API Key,并启动MindSearch的后端服务:

    # 设置API Key
    export SILICON_API_KEY=您复制的密钥
    # 启动服务
    python -m mindsearch.app --lang en --model_format internlm_silicon --search_engine DuckDuckGoSearch
    
  2. 启动前端

    使用Gradio前端启动MindSearch。如果您使用的是其他前端,请参考MindSearch的README文档。

    python frontend/mindsearch_gradio.py
    

体验效果

启动完成后,您可以开始体验MindSearch的强大功能。响应速度非常快,用户体验极佳。

响应速度

部署到HuggingFace Space

您还可以选择将MindSearch部署到HuggingFace的Space中。

  1. 创建Space

    访问 HuggingFace Space 创建一个新的Space。

    创建Space

  2. 设置API Key

    创建成功后,进入Space的设置页面,配置API Key。

    设置API Key

  3. 上传文件

    将MindSearch目录、requirements.txtapp.py文件上传到Space中。

    上传文件

    app.py的具体内容请访问 HuggingFace Space上的MindSearch_X_SiliconFlow 查看。


### 解决方案 当遇到 `CondaError: Run ‘conda init’ before ‘conda activate` 错误时,可以按照以下方式处理: #### 初始化 Conda 并重载 Shell 配置 即使之前已执行过 `conda init` 命令,在某些情况下仍需再次确认并确保其成功完成。这一步骤会修改当前使用的 shell 的配置文件(如 `.bashrc` 或者其他相应文件),以便正确设置 conda 所需的环境变量。 ```sh conda init source ~/.bashrc # 对于 bash 用户;对于 zsh 使用 "source ~/.zshrc" ``` 上述操作有助于确保所有必要的更改被应用到当前 session 中[^3]。 #### 修改默认环境路径 (针对特定情况) 如果是在迁移或克隆现有系统后遇到了此类问题,则可能是由于新的环境中缺少原有系统的部分配置所引起的。此时可以通过指定自定义的位置来存储 conda 环境,从而绕开可能存在的权限或其他方面的问题。 编辑用户的 shell 配置文件(`.bashrc`, `.zshrc` 等),添加如下行以设定一个新的目录作为 conda 环境的基础位置,并记得替换 `/path/to/your/envs` 成实际想要放置这些环境的具体地址: ```sh export CONDA_ENVS_PATH=/path/to/your/envs ``` 保存更改后的配置文件并通过命令让改动立即生效: ```sh source ~/.bashrc # 同样适用于 bash; 如果是 zsh 则应为 ".zshrc" ``` 这样做不仅能够帮助解决激活失败的问题,还可以更好地管理不同项目之间的依赖关系[^4]。 通过以上措施通常能有效克服因未适当初始化而导致无法正常启动 conda 虚拟环境的情况。值得注意的是,具体实施过程中还需考虑个人操作系统以及 shell 类型的不同之处做出相应的调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值