softmax回归+数据集等等

图像分类数据集里

  1. 减少batch_size(如减少到1)是否会影响读取性能?
    答:

     批量越大时间的成本是越低的。

  2. 数据迭代器的性能非常重要。你认为当前的实现足够快吗?探索各种选择来改进它。
    不会

  3. 查阅框架的在线API文档。还有哪些其他数据集可用?
    自行查阅

#softmax实现开始
import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

#28*28=784 因为我们softmax的输入是一个向量 所以拉长他,当然他损失了很多的空间信息
num_inputs = 784
num_outputs = 10
#定义权重 高斯随机的 形状是784*10的矩阵  
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
#偏置项 是10  1*10的矩阵
b = torch.zeros(num_outputs, requires_grad=True)

def softmax(x):
    x_exp = torch.exp(x)
    partition = x_exp.sum(1, keepdim=True)
    return x_exp / partition

X = torch.normal(0, 1, (2, 5))
X, X.shape[0]

X_p = softmax(X)
X_p, X_p.sum(1)

def net(X):
    #-1表示列/行数自动计算
    #    reshape(1,-1)转化成1行  reshape(-1,1)转换成1列   W.shape[0]的意思是看他的行
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

#y是真实值代表第几个类别
#y_hat是预测概率
#具体一点假定0代表苹果,1代表橘子,2代表香蕉,
#y=【0,2】0代表第一个图片真的是苹果,2代表第二个图片真的是香蕉。
#而y_hat是预测值,y_hat里头两列,表示算法识别第一个图片是苹果的概率是0.1,
#是橘子的概率为0.3,是香蕉的概率是0.6.第二个图片类似。
#y_hat【【0,1】,y】=【0.1】【0.5】,这个算法把第一个图片识别为苹果的概率是0.1,
#第二个图片识别成香蕉的概率是0.5。
#即,我这个调教出来的算法,识别正确的概率。
y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]

#y = torch.tensor([0, 2 ,1, 2])
#y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
#y0 = 0 就是y_hat中第0个样本的第0个数据 y1 = 2就是y_hat中第1个样本的第二个数据
#y_hat[[0, 1, 0,0], y]

 def cross_entropy(y_hat, y):
        #len是返回几行
    return - torch.log(y_hat[range(len(y_hat)), y])

cross_entropy(y_hat, y), len(y_hat)

def accuracy(y_hat, y):  #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        #argmax为0/1按列/行寻找最大值的下标
        y_hat = y_hat.argmax(axis=1)
        #cmp是bool类型的
    cmp = y_hat.type(y.dtype) == y
    #再将它与y一样的形状 求和
    return float(cmp.type(y.dtype).sum())

accuracy(y_hat, y) / len(y)

def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

evaluate_accuracy(net, test_iter)

def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            #计算梯度
            l.mean().backward()
            #更新参数
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    #扫n遍数据 
    for epoch in range(num_epochs):
        #训练训练集的数据
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        #在测试集看一下精度
        test_acc = evaluate_accuracy(net, test_iter)
        #在animator显示一下训练的误差
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

num_epochs = 20
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

#蓝色的是训练损失
#紫色的虚线是训练的精度
#绿色是测试的精度
def predict_ch3(net, test_iter, n=6):  #@save
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

简单的说一下代码 

首先第一段是对训练集和测试集的读取,接下来定义权重和偏置项,

定义softmax。

接下来我们设置一个X来试验一下我们的代码。

net函数是前向传播的过程。

y与y_hat的get

使用交叉熵作为损失函数。

accuracy是计算预测正确的占总体的比例。

  evaluate_accuracy是在指定训练集上的预测比例 是上一个的泛化

Accumulator累加函数

train_epoch_ch3 训练函数(1遍) 包括反向传播计算梯度 返回训练损失和精度

Animator画图 这个函数其实没必要看哈

train_ch3 训练n遍的函数  这里相当与一个程序的main函数哈

定义一下学习率等等等。

  1. 在本节中,我们直接实现了基于数学定义softmax运算的softmax函数。这可能会导致什么问题?提示:尝试计算exp⁡(50)的大小。
    如果输入的值很大,可能超出长度范围

  2. 本节中的函数cross_entropy是根据交叉熵损失函数的定义实现的。它可能有什么问题?提示:考虑对数的定义域。
    如果y_hat很小的,那-log就会很大说不定会变成趋近于无穷大,就也可能越界

  3. 你可以想到什么解决方案来解决上述两个问题?
    如果快到一个越界 就不要他了

  4. 返回概率最大的分类标签总是最优解吗?例如,医疗诊断场景下你会这样做吗?
    通常是吧,在诊断场景 我们只能说他可能是什么也不能确定的说他是什么

  5. 假设我们使用softmax回归来预测下一个单词,可选取的单词数目过多可能会带来哪些问题?
    这个就是我们的类别过多会导致什么,算法可能对所有的分类都有了一样的概率,,可能得不到最优解,当然你的反向传播也就没有用了。
     

  6. 尝试调整超参数,例如批量大小、迭代周期数和学习率,并查看结果。
    自己挑看一下哈

  7. 增加迭代周期的数量。为什么测试精度会在一段时间后降低?我们怎么解决这个问题?
    过拟合了,增加点训练样本

老师QA环节:

什么是软标签硬标签 。 以及他的策略。

pytorch文档中有怎么分测试集和训练集

统计学习:Statistics learning 是对模型的可解释性的书。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
化学学科--初高中知识的衔接 编者的话 同学们高中生活欢迎你! 在人生旅途中,你们跨入了一个关键时期。每个人都对自己的未来憧憬着,并开始为之奋斗。不过,要想取得成功,还要付出艰苦的努力,因为成功就像一把梯子,如果你一直把双手插在口袋里,是永远也爬不上去的!要想成功,最关键的一点:始终如一地保持一颗自信的心再加上坚持不懈的努力! 准高中生之思想现状 经过中考,拿到了高中录取通知书,心理非常激动,在思想上想放松一下。部分学生对化学科认识上存在一定的误区,认为化学多简单嘛,开考前背背书,高分数就收入囊中了。由此顺推,高中化学也很简单,照搬初中的学法,平常轻松度过,到高三再用功,高考场上同样应付自如!殊不知: 高中化学在初中化学的基础上,知识的深度、广度及思维难度都大大的增加,再用“耍耍背背”的“方法”和尽靠小聪明是啃不动高中化学这块骨头的! 由于“轻视化学”的思想作祟,上课听课习惯不好,即:只听不动笔做笔记;只上课听听,下来根本不练习!这样下来,上课听懂的知识不能转化成自己的能力,练习中不能运用自如,考试中不能取得理想的成绩。 上课能听懂,下来不练习,之后便逢考必差,一学期下来,自信就全无! 同学们肯定不希望这样的情况再出现在自己身上,那就让我们来做好初高中化学的衔接工作吧,让自己顺利“过渡”,迎取高中化学学习的胜利! “初中课改新生基础知识不扎实”,是教师们的共同感受。用初中课改教材的同学,不适应高中新课标。原本在初中成绩不错,可是上了高中就感到不适应新的学习,成绩一落千丈。通过深入调查研究,我们发现这并不是因为同学们学习能力不够,也不是高中教学出现了问题,而是由于初中课改教材与高中教材之间不能很好地衔接。 怎样才能学好高中化学 同学们要想在高中阶段里学好化学,除了要重视它以外,还必须掌握科学的学习方法。达尔文说过:“最有价值的知识是关于方法的知识。”大家一旦掌握了学习化学的方法,就一定能轻松、愉地学好化学。   一、勤于预习,善于听课做笔记   课前一定要预习,在预习时,除了要把新课内容仔细读一遍外,还应在不懂处作上记号,并试着做一做课本上的练习。这样带着疑问、难点,听课的效率就会大大地提高。 高中化学内容比较多,老师在讲课时,着重围绕重点内容进行讲授。因此大家要仔细听课,认真做笔记,这不仅有利于进行课后复习,掌握重点,而且还可以有效地预防上课时“走神”。不过,在记笔记时,必须讲究方法,要在听清楚老师所讲内容的基础上,记重点、难点、疑点和课本上没有的内容。用最少的化学语言记最大量的知识内容,这点在直播课的学习中尤显重要。   二、常复习,多记忆   课后应及时复习,认真做好作业,这是学好化学的重要环节。复习可采用课后复习、周后复习、单元复习、章节复习、综合复习等。复习的方法有复述、默写、做联系等。只有通过多次复习才能牢固地掌握知识。   三、吃透课本,联系实际   以课本为主线,认真吃透课本,这是学好化学的根本。为此,同学们必须善于阅读课本,做到课前预读、课后细读、经常选读等,既重视主要内容,也不忽视小字部分和一些图表及选学内容,因为这些内容有助于加深对 内容的理解及拓宽知识面。课后细读时要边读边记边思考,争取能将预习、听课中未解决的问题全部解决。经常选读是指有选择性的阅读那些重要的或难以全面理解的内容。同时通过多种形式的阅读,还有助于提高自学能力。   化学与生活、生产联系紧密。这就要求我们在学习化学的同时,应尽量联系生产、生活实际,从身边的生活中发现化学,体味化学,这样就能越学越有兴趣,越学越想学,越学越爱学。 初中新课程教材删除了繁、难、偏、旧的知识,体现了“浅、少、易”的特点,新知识的引入与日常生活很贴近,形象生动,遵循了从感性认识上升到理性认识的规律,比较容易理解、接受和掌握,体现了“做中学”的教育思想。 可是高中使用的还是原教材,现行的初中新课程与高中课程之间存在很大的空白,两者没有很好地衔接和协调,同时初高中化学学习方法上也存在着明显的不同,这些给高中教师的教和高中新学生的学都带来巨大的障碍和困难,正是适应这一迫切需求,我们为广大师生献上了这本书作为新学期礼物。 探索实践中我们意识到,升入高中的“课改生”,要尽适应高中学习,一方面要填补知识漏洞,另一方面要调整自己的学习习惯,要根据自己的条件以及高中阶段学科知识交叉多、综合性强的特点,寻找有效的适合自己的学习方法,培养自己主动获取知识的能力,以便使自己在高中激烈的竞争中占据主动地位。 本书着眼学生的发展,将初中与高中学习的差别表述出来,将初中忽略的但高考必考的知识有机地渗透在高中的学习之中,同时还有学法指导。 希望本书能为教师和学生提供一些帮助,相信大家在读了本书之后,会有一定收获。 目 录 绪 言 初、高中学生学习方法的对比及策略 第一讲

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值