数据增广+代码实现+Q&A

本文介绍PyTorch中数据增广的重要性和实施步骤,包括加载数据集、应用增广、构建dataloader及训练模型。通过对比实验展示数据增广能提升模型的泛化能力,减少过拟合。同时探讨了不同场景下增广的策略,并讨论了数据量、测试集增广等话题。
摘要由CSDN通过智能技术生成

前言

在做kaggle叶子分类竞赛的时候,我发现我无法完整的布置一个项目尤其是对dataloader无法自我部署,包括数据预处理方面。我看了几篇博客,其实最重要的就是dataloader的书写。所以我暂时放弃了kaggle,专心将计算机视觉的相关学完后再去做沐神创办的竞赛。

数据增广

就是增强,为了是增大数据集添加噪音更好的泛化之类的操作。

代码实现

对他所有的每个项目的部署进行分解。

pytorch中加载数据的顺序是:
①创建一个dataset对象
②创建一个dataloader对象
③循环dataloader对象,将data,label拿到模型中去训练

1.加载数据集dataset

加载数据集并随机打印32个


all_images = torchvision.datasets.CIFAR10(
    train=True, root="../data", download=True)
d2l.show_images([
    all_images[i][0] for i in range(32)], 4, 8, scale=0.8);

2.数据增广

#totensor将他变成4d的矩阵
train_augs = torchvision.transforms.Compose([
     torchvision.transforms.RandomHorizontalFlip(),
     torchvision.transforms.ColorJitter(brightness=0.5, contrast=0, saturation=0, hue=0),
     torchvision.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值