每日一题8

27 篇文章 0 订阅

今日题目

实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,x的n次方)。

首先,我想到的就是暴力解题法,下面是代码的实现

public double myPow(double x , int n ){
        //暴力解法
        if (n < 0){
            x = 1/x;
            n = -n;
        }

        double res = 1;
        for (int i = 0; i < n ;i++){
            res = res * x;
        }
        return res;
    }

但是这样写,当遇到很大的数时,就要递归很多很多very多次,非常的不好用,以至于在力扣上过不了,当然这也是因为有的输入给的真的是离谱,这里想要改进的话,可以把n的类型改成long long,这样才够用。

然后,就是学习真正的解题方法(快速幂法)

public double myPowerHelper(double x, int n){
        if (n == 1){
            return x;
        }
        //利用二分法,在n很大很大的时候很有效
        if (n % 2 == 0){
            //当n是偶数时
          double half = myPowerHelper(x,n/2);
            return half * half;
        }else {
            //当n是奇数时
            double half = myPowerHelper(x,n/2);
            return half * half * x;
        }
    }

    public double myPower(double x,int n){
        //先讨论x等于1和n等于0的情况
        if (x == 1 || n == 0){
            return 1;
        }
        if (n < 0){
            return 1 / myPowerHelper(x,n);
        }
        return myPowerHelper(x,n);
    }

采用了二分的思想,这样在递归很多次时,就能够大大的缩小时间。确实是学习到了。也就是当处理很大的数据时,可以将数据分成几个部分来算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值