今日题目
实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,x的n次方)。
首先,我想到的就是暴力解题法,下面是代码的实现
public double myPow(double x , int n ){
//暴力解法
if (n < 0){
x = 1/x;
n = -n;
}
double res = 1;
for (int i = 0; i < n ;i++){
res = res * x;
}
return res;
}
但是这样写,当遇到很大的数时,就要递归很多很多very多次,非常的不好用,以至于在力扣上过不了,当然这也是因为有的输入给的真的是离谱,这里想要改进的话,可以把n的类型改成long long,这样才够用。
然后,就是学习真正的解题方法(快速幂法)
public double myPowerHelper(double x, int n){
if (n == 1){
return x;
}
//利用二分法,在n很大很大的时候很有效
if (n % 2 == 0){
//当n是偶数时
double half = myPowerHelper(x,n/2);
return half * half;
}else {
//当n是奇数时
double half = myPowerHelper(x,n/2);
return half * half * x;
}
}
public double myPower(double x,int n){
//先讨论x等于1和n等于0的情况
if (x == 1 || n == 0){
return 1;
}
if (n < 0){
return 1 / myPowerHelper(x,n);
}
return myPowerHelper(x,n);
}
采用了二分的思想,这样在递归很多次时,就能够大大的缩小时间。确实是学习到了。也就是当处理很大的数据时,可以将数据分成几个部分来算。