numpy基础

本文介绍了NumPy库的基本使用,包括创建数组、查看维度和形状、计算元素数量、定义数据类型、生成特殊矩阵,以及矩阵操作如求和、最大值、最小值、索引、平均值、中位数等。此外,还涵盖了矩阵的转换、合并、分割、复制等高级功能。
摘要由CSDN通过智能技术生成

1,numpy属性

import numpy as np
array=np.array([[1,2,3],
               [4,5,6]])#建立数组
print(array.ndim)#查看维度
print(array.shape)#几行几列
print(array.size)#元素总数

结果直接输出2,(2,3),6

1,dtype定义矩阵元素的类型

例:a=numpy.array([],dtype=numpy.float)   #还可以(int,int32,int64)位数越小占空间越小。

2,    生成矩阵np.zeros(n,m)//np.ones(n,m)生成n行m列的零//一矩阵

还有以下函数:

arrange(),linspace(),改变形状reshape()求和0是列1是行np.sum(b,axis=0)

import numpy as np
a=np.arange(12).reshape((3,4))
print(a)
b=np.linspace(1,10,6).reshape((2,3))#生成线段
print(b)

 结果

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

[[ 1.   2.8  4.6]
 [ 6.4  8.2 10. ]]

求最大np.max(b,axis=0)

求最小np.min(b,axis=0)

a最小索引np.argmin(a)

a最大的索引np.argmax(a)

a平均值np.mean(a)/a.mean()/np.average(a)

求中位数np.median(a)

逐步累加np.cumsum(a)

相邻两个数之差np.diff(a)

判断非零np.nonzero(a)

逐行排序np.sort(a)

a矩阵转置np.transpose(a)/a.T

np.clip(a,n,m)a中元素大于m的变成m,小于n的变成n

a矩阵变成一个列表a.flatten()遍历for item in a.flat

合并

将两个矩阵上下合并np.vstack((a,b))

将两个矩阵左右合并np.hstack((a,b))

给矩阵加维度a[np.newaxis,:]/a[:,np.newaxis](/)

矩阵合并np.concatenate((a,a,a,a),axis=n)n=0(纵),1(横)

分割

分割矩阵均分np.split(a,n,axis=0/1)

不均分np.array_split(a,n,axis=0/1)

纵向分割np.vsplit(a,n)

横向分割np.hsplit(a,n)

复制

浅复制a=b//a is b……a,b是同一个矩阵

深复制b=a.copy()……a,b不是同一矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值