2024全国大学生数学建模竞赛C题

2024全国大学生数学建模竞赛C题 - 乡村有机种植优化模型解析

一、问题背景

本模型针对乡村有机种植优化问题,旨在通过数学建模方法,为农村地区不同类型地块的作物种植规划提供最优解决方案。模型考虑了2024-2030年的时间跨度,结合不同地块特性、作物特点、市场需求及农业轮作等多种约束条件,构建了一个整数线性规划模型。

二、模型基础参数

1. 时间与季节划分

  • 规划年限:2024-2030年(共7年)
  • 季节划分:每年分为两个种植季(第一季和第二季)

2. 地块类型与面积

模型涉及六种不同类型的地块:

地块类型地块编号数量单块面积总面积
平旱地A1-A6635-80亩365亩
梯田B1-B141420-86亩619亩
山坡地C1-C6613-27亩108亩
水浇地D1-D886-22亩109亩
普通大棚E1-E16160.6亩9.6亩
智慧大棚F1-F440.6亩2.4亩

3. 作物分类

模型考虑了41种不同作物,分为以下几类:

  • 粮食作物:小麦、玉米、谷子等
  • 豆类作物:黄豆、黑豆、红豆等
  • 蔬菜类作物:西红柿、茄子、菠菜等
  • 食用菌:榆黄菇、香菇等
  • 特殊蔬菜:大白菜、白萝卜、红萝卜

三、种植规则与约束条件

1. 地块种植限制

不同类型的地块适合种植不同类型的作物:

  • 平旱地、梯田和山坡地:适宜单季种植粮食类作物豆类作物
  • 水浇地:可单季种植水稻或两季种植蔬菜作物
    • 第一季可种植普通蔬菜
    • 第二季只能种植大白菜、白萝卜和红萝卜
  • 普通大棚:每年种植两季作物
    • 第一季可种植普通蔬菜
    • 第二季只能种植食用菌
  • 智慧大棚:每年可种植两季蔬菜

2. 轮作要求

  • 连作限制:同一作物在同一地块最多连作一年
  • 豆科轮作:大面积地块三年内至少种植一次豆科作物

3. 种植面积约束

  • 最小种植面积:若种植某作物,其面积至少为地块面积的20%
  • 地块利用:每个地块每季种植面积之和不超过总面积
  • 作物种类限制:每个地块每季最多种植2种作物

四、产量、价格与成本

模型考虑了不同地块类型、不同作物的产量、价格和成本数据:

  • 产量数据:根据地块类型和作物种类设定不同的单位面积产量
  • 价格数据
    • 正常价格:作物在预期销售量内的销售价格
    • 折扣价格:超过预期销售量部分的折扣销售价格(约为正常价格的60%)
  • 成本数据:不同地块种植不同作物的单位面积成本

五、优化模型

1. 决策变量

  • 二进制变量:表示是否在特定地块的特定季节种植特定作物
  • 连续变量:表示在特定地块的特定季节种植特定作物的面积

2. 目标函数

模型考虑了两种情况的目标函数:

  • 情况1(超产浪费):最大化利润,超过预期销售量的产量不计入收入
  • 情况2(超产折价):最大化利润,超过预期销售量的产量以折扣价销售

3. 约束条件

  • 土地利用约束
  • 最小种植面积约束
  • 作物种类数量限制
  • 连作约束
  • 豆科作物轮作约束

六、求解方法

模型方法求解:

options = optimoptions('intlinprog', 'Display', 'iter', ...
                      'MaxTime', 7200, ... % 求解时间限制为7200秒
                      'RelativeGapTolerance', 0.15, ...
                      'AbsoluteGapTolerance', 1000, ... 
                      'CutGeneration', 'basic', ... 
                      'RootLPAlgorithm', 'dual-simplex', ... 
                      'HeuristicsMaxNodes', 1000, ... 
                      'TolCon', 1e-5); 

% 求解情况1
[x_waste, fval_waste, exitflag_waste, output_waste] = intlinprog(f_waste, intcon, A, b, Aeq, beq, lb, ub, options);

% 求解情况2
[x_discount, fval_discount, exitflag_discount, output_discount] = intlinprog(f_discount, intcon, A, b, Aeq, beq, lb, ub, options);

七、结果分析

1. 产销平衡分析

模型分析了每年各作物的产销平衡情况:

  • 供不应求:产量小于或等于预期销售量
  • 供过于求:产量大于预期销售量,超出部分需要折价销售或浪费

2. 豆科作物轮作分析

检查每个地块在三年内是否种植了豆科作物,以满足轮作要求。

3. 两种情况对比

比较了超产浪费和超产折价两种情况下的总利润和年度利润:

  • 情况1(超产浪费):超过预期销售量的产量不计入收入
  • 情况2(超产折价):超过预期销售量的产量以折扣价销售

八、结果输出

模型将优化结果导出到Excel表格,包含以下信息:

  • 年份
  • 季节
  • 地块
  • 作物
  • 作物类型
  • 种植面积

两种情况分别导出为"优化种植方案结果_超产浪费.xlsx"和"优化种植方案结果_超产折价.xlsx"。

九、模型特点与创新点

  1. 多目标考量:同时考虑经济效益和农业可持续发展
  2. 轮作机制:引入豆科作物轮作机制,保证土壤健康
  3. 灵活销售策略:考虑超产情况下的不同处理方式
  4. 时间动态性:考虑7年的长期规划,而非单年度优化
  5. 地块差异化:充分考虑不同地块类型的特性和适宜作物

十、模型局限性与改进方向

  1. 气候因素:未考虑气候变化对产量的影响
  2. 市场波动:假设市场需求按固定比例增长,未考虑市场波动
  3. 技术进步:未考虑农业技术进步对产量的提升
  4. 劳动力约束:未考虑劳动力资源限制
  5. 运输与储存:未考虑产品运输和储存成本

十一、结论

通过整数线性规划模型,成功为乡村有机种植提供了优化方案。结果表明,超产折价销售策略比超产浪费策略能获得更高的经济效益。同时,模型满足了农业轮作等可持续发展要求,为乡村振兴提供了科学的种植规划参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值