和鲸学习笔记-3

我正在和鲸社区参加“xxxx商业分析师 Python 训练营 BA1:应用入门活动”  商业分析师 Python 训练营 BA1:应用入门 - Heywhale.com,以下是我的学习笔记:

学习主题:商业数据存取

日期:2023.9.14

关键概念/知识点:

  • 用pandas读取本地文件,用pd.to_csv( )或pd.to_excel( )将数据保存
  • 用.head()、tail( )、sample(10)等方法预览数据
  • 用tushare库获取股票、基金、期货、数据货币等行情数据
  • 用Pandas_datareader库获取谷歌金融数据Google Finance、英格玛数据Enigma等数据

掌握的新函数/方法:

  • groupby()
  • agg()
  • pd.to_datetime( )

代码举例:

# 示例代码 
grouped = stock_data.groupby('ts_code')    

aggregated = grouped['open', 'close'].agg(['mean', 'max', 'min'])

# 将trade_date列转换为日期格式
stock_data['trade_date'] = pd.to_datetime(stock_data['trade_date'], format='%Y%m%d')

# 按照股票代码(ts_code)和年份(trade_date)进行分组,并计算成交量(vol列)的总和
grouped_data = stock_data.groupby(['ts_code',pd.Grouper(key='trade_date',freq='Y')])['vol'].sum()

关键总结:

  • group分组后用agg对多列应用聚会函数,提高效率
  • 学到了用两种库读取商业数据的方法
  • 对股票数据的代码和年份分组以及画最高值(high列)的折线变化图之前,需要先将日期由字符串格式转化为时间格式

问题/困惑:

  • 不熟悉时间的字符串格式和时间格式及相关转化
  • 需要更多关于分组函数groupby()的练习

下一步计划:

  • 了解更多数据清洗的方法,练习日期格式转化
  • 完成分组函数的练习

参考资料/相关资源链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值