数据结构实验8---- 拓扑排序

实验题目

实验题目: 拓扑排序。给定有向图,设计一个算法,对它进行拓扑排序。拓扑排序算法思想:a.在有向图中任选一个没有前趋的顶点输出;b.从图中删除该顶点和所有以它为尾的弧;c.重复上述a、b,直到全部顶点都已输出,此时,顶点输出序列即为一个拓朴有序序列;或者直到图中没有无前趋的顶点为止,此情形表明有向图中存在环。 

实验说明:拓扑排序算法伪代码如下:

        1. 栈S初始化;累加器count初始化;

        2. 扫描顶点表,将没有前驱(即入度为0)的顶点压栈;

        3. 当栈S非空时循环

            3.1 vj=退出栈顶元素;输出vj;累加器加1;

        3.2 将顶点vj的各个邻接点的入度减1;

        3.3 将新的入度为0的顶点入栈;

        4. if (count<vertexNum) 输出有回路信息;

实验内容

1.问题设计分析

        拓扑排序的过程如下:
                (1)从有向图中选择一个没有前驱(即入度为0)的顶点并且输出它。

                (2)从图中删去该顶点,并且删去从该顶点发出的全部有向边。
                (3)重复上述两步,直到剩余的图中不再存在没有前驱的顶点为止。
        这样操作的结果有两种:一种是图中顶点都被输出,即该图中的所有顶点都在其拓扑序列中,这说明图中不存在回路;另一种就是图中顶点未被全部输出,这说明图中存在回路。所以可以通过对一个有向图进行拓扑排序,看是否产生全部顶点的拓扑序列来确定该图中是否存在回路。
        在拓扑排序的过程中,当某个顶点的入度为0时,就将此顶点输出,同时将该顶点及其所有出边删除,实际上没有必要真正删除出边,设置一个indegree数组存放每个顶点的入度,删除一条出边是通过将出边邻接点的入度减1实现的。另外,为了避免重复检测入度为0的顶点,设置一个栈st存放人度为0的顶点,这里采用顺序栈。

2.程序编码

#include <stdio.h>
#include <malloc.h>
#define INF 32767
#define MAXV 100
#define MaxSize 100
typedef int ElemType;
typedef char InfoType;
typedef struct ANode
{
	int adjvex;
	struct ANode *nextarc;
	int weight;	
}ArcNode;
typedef struct Vnode
{
	InfoType info;
	int count;
	ArcNode *firstarc;
}VNode;
typedef struct
{
	VNode adjlist[MAXV];
	int n,e;
}AdjGraph;
void CreatAdj(AdjGraph *&G,int A[MAXV][MAXV],int n,int e)
{
	int i,j;
	ArcNode *p;
	G=(AdjGraph *)malloc(sizeof(AdjGraph));
	for(i=0;i<n;i++)
		G->adjlist[i].firstarc=NULL;
	for(i=0;i<n;i++)
		for(j=n-1;j>=0;j--)
			if(A[i][j]!=0&&A[i][j]!=INF)
			{
				p=(ArcNode *)malloc(sizeof(ArcNode));
				p->adjvex=j;
				p->weight=A[i][j];
				p->nextarc=G->adjlist[i].firstarc;
				G->adjlist[i].firstarc=p;
			}
	G->n=n;G->e=n;
}
void DispAdj(AdjGraph *G)
{
	ArcNode *p;
	for(int i=0;i<G->n;i++)
	{
		p=G->adjlist[i].firstarc;
		printf("%3d:",i);
		while(p!=NULL)
		{
			printf("%3d[%d]→",p->adjvex,p->weight);
			p=p->nextarc;
		}
		printf("^\n");
	}
}
void DestroyAdj(AdjGraph *&G)
{
	ArcNode *pre,*p;
	for(int i=0;i<G->n;i++)
	{
		pre=G->adjlist[i].firstarc;
		if(pre!=NULL)
		{
			p=pre->nextarc;
			while(p!=NULL)
			{
				free(pre);
				pre=p;p=p->nextarc;
			}
			free(pre);
		}
	}
	free(G);
}
typedef struct 
{	
	ElemType data[MaxSize];
	int top;				//栈指针
} SqStack;					//顺序栈类型
void InitStack(SqStack *&s)  //初始化栈
{
	s=(SqStack *)malloc(sizeof(SqStack));
	s->top=-1;
} 
bool StackEmpty(SqStack *s)  //判断栈是否为空
{
	return(s->top==-1);
}

bool Push(SqStack *&s,ElemType e)  //元素e入栈
{
	if (s->top==MaxSize-1)    //栈满的情况,即栈上溢出
		return false;
	s->top++;
	s->data[s->top]=e;
	return true;
}
bool Pop(SqStack *&s,ElemType &e)  //出栈
{
	if (s->top==-1)		//栈为空的情况,即栈下溢出
		return false;
	e=s->data[s->top];
	s->top--;
	return true;
} 
void TopSort(AdjGraph *G)
{
	SqStack *st;
	InitStack(st);
	int indegree[MAXV];
	for(int i=0;i<G->n;i++)
	indegree[i]=0;
	for(int i=0;i<G->n;i++)
	{
		ArcNode *p=G->adjlist[i].firstarc;
		while(p!=NULL)
		{
			int w=p->adjvex;
			indegree[w]++;
			p=p->nextarc;
		}
	}
	for(int i=0;i<G->n;i++)
		if(indegree[i]==0)
			Push(st,i);
	int i;
	while(!StackEmpty(st))
	{
		Pop(st,i);
		printf("C%d-> ",i+1);
		ArcNode *p=G->adjlist[i].firstarc;
		while(p!=NULL)
		{
			int w=p->adjvex;
			indegree[w]--;
			if(indegree[w]==0)
				Push(st,w);	
			p=p->nextarc;
		}
	}	
}
int main()
{
	AdjGraph *G;
	int A[MAXV][MAXV];
	int n=7,e=8;
	for(int i=0;i<n;i++)
		for(int j=0;j<n;j++)
			A[i][j]=0;
	A[0][2]=1;
	A[1][3]=1;A[1][6]=1;A[1][4]=1;
	A[2][3]=1;
	A[3][4]=1;A[3][5]=1;
	A[6][5]=1;
	CreatAdj(G,A,n,e);
	printf("图G的邻接表:\n");
	DispAdj(G);
	TopSort(G);
	DestroyAdj(G);	
}

3.运行结果和分析

        在上述算法中,我们需要用到图的基本运算算法和图的存储算法:本次用到的是邻接表类型存储的图并且添加了创建图的邻接表、输出图的邻接表、销毁图的邻接表等算法。

        还需要用到栈的基本算法:初始化栈、判断栈是否为空、元素入栈、出栈等这些算法。和以往不同的是,此次应该将ElemType定义为int型,否则会报错。结果如下:

 4.实验小结

        在上述拓扑排序算法中,栈st的作用是保存当前所有入度为0的顶点,先输出其中任意哪个顶点不影响拓扑排序的正确性,所以可以用队列代替栈。

以下是拓扑排序的C语言实现,假设给定有向图存储在一个邻接表中: ```c #include <stdio.h> #include <stdlib.h> #define MAX_VERTEX_NUM 100 typedef struct ArcNode { int adjvex; // 邻接点在顶点数组中的位置 struct ArcNode *nextarc; // 指向下一个邻接点的指针 } ArcNode; typedef struct VertexNode { int data; // 顶点数据 ArcNode *firstarc; // 指向第一个邻接点的指针 } VertexNode; typedef struct { VertexNode vertices[MAX_VERTEX_NUM]; // 顶点数组 int vexnum, arcnum; // 顶点数和边数 int indegree[MAX_VERTEX_NUM]; // 每个顶点的入度 } Graph; // 初始化有向图 void InitGraph(Graph *G, int vexnum, int arcnum) { G->vexnum = vexnum; G->arcnum = arcnum; for (int i = 0; i < vexnum; i++) { G->vertices[i].data = i; // 顶点数据 G->vertices[i].firstarc = NULL; // 邻接表为空 G->indegree[i] = 0; // 入度为0 } } // 添加一条边 void AddArc(Graph *G, int tail, int head) { ArcNode *p = (ArcNode *)malloc(sizeof(ArcNode)); // 创建邻接点 p->adjvex = head; p->nextarc = G->vertices[tail].firstarc; // 将邻接点插入到邻接表头部 G->vertices[tail].firstarc = p; G->indegree[head]++; // 更新入度 } // 拓扑排序 void TopologicalSort(Graph *G) { int count = 0; // 计数器,记录已经输出的顶点数 int stack[MAX_VERTEX_NUM]; // 栈,存储入度为0的顶点 int top = -1; // 栈顶指针 // 将所有入度为0的顶点入栈 for (int i = 0; i < G->vexnum; i++) { if (G->indegree[i] == 0) { stack[++top] = i; } } while (top != -1) { int v = stack[top--]; // 出栈 printf("%d ", G->vertices[v].data); // 输出顶点 count++; // 遍历v的所有邻接点 for (ArcNode *p = G->vertices[v].firstarc; p != NULL; p = p->nextarc) { int w = p->adjvex; if (--G->indegree[w] == 0) { // 如果入度为0,入栈 stack[++top] = w; } } } if (count != G->vexnum) { // 如果输出的顶点数不等于总顶点数,说明存在环路 printf("Error: Graph has a cycle!\n"); } } int main() { Graph G; int vexnum = 6; int arcnum = 8; InitGraph(&G, vexnum, arcnum); AddArc(&G, 0, 1); AddArc(&G, 0, 2); AddArc(&G, 1, 3); AddArc(&G, 1, 4); AddArc(&G, 2, 4); AddArc(&G, 3, 5); AddArc(&G, 4, 3); AddArc(&G, 4, 5); TopologicalSort(&G); return 0; } ``` 上述代码中的有向图是这样的: ``` 0 -> 1 -> 3 -> 5 | | v v 2 -> 4 ``` 其拓扑排序结果为:0 1 2 3 4 5。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值