题目(LeetCode):
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
这道题的做法为动态规划,我们可类比LeetCode#53. 最大子数组和_如风Zhhh的博客-CSDN博客
的做法,会发现它们由许多相似之处,我们也用dp[i]表示前i项所得到的最大值。
class Solution:
def rob(self, nums: List[int]) -> int:
if len(nums)==1: #先列出特殊情况①
return nums[0]
elif len(nums)==2: #特殊情况②
return max(nums)
dp=[0]*len(nums) #当len(nums)>2时
dp[0]=nums[0] #如果只有1家,就得到第一家的值
dp[1]=max(nums[0],nums[1]) #前两家得他们中的到最大值
for i in range(2,len(nums)):
dp[i]=max(dp[i-1],dp[i-2]+nums[i]) #如果第i家偷,得到前i-1家最大值
return dp[len(nums)-1] #如果第i家不偷,得到前i-2家最大值和第i家的值