numpy float64形式的rgb图片没有损失的转换为PIL图片

将浮点数类型的数组转换为整数类型时,由于类型转换的原因,可能会出现像素值差距超大的情况。这是因为将浮点数类型的像素值转换为整数类型时,会进行舍入操作。如果原始像素值小于0或大于255,则可能会出现截断或溢出现象,导致像素值的差距超大。

为了解决这个问题,可以先将浮点数类型的像素值归一化到0到255的范围内,然后再进行类型转换。具体做法是将像素值乘以255并四舍五入,然后将结果转换为整数类型。

以下是一个示例代码,将float64类型的数组转换为uint8类型,并归一化到0到255的范围内:

import cv2
import numpy as np

# 读取图像并转换为RGB格式的NumPy数组
img = cv2.imread("example.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 将像素值归一化到0到255的范围内
img_norm = np.round(img / np.max(img) * 255)

# 将float64类型的数组转换为uint8类型
img_uint8 = img_norm.astype(np.uint8)

# 打印数组的形状和数据类型
print("Shape:", img_uint8.shape)
print("Data type:", img_uint8.dtype)

在上述代码中,我们首先使用cv2.imread()和cv2.cvtColor()函数将图像读入并转换为RGB格式的NumPy数组。然后,我们将像素值归一化到0到255的范围内,然后使用astype()方法将数组的数据类型转换为uint8类型。最后,我们使用shape和dtype属性分别打印数组的形状和数据类型。

这样处理后,应该可以得到像素值差距不大的图像数组了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BTU_YC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值