300.最长递增子序列
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的
子序列。
解题思路:
确认dp数组含义:dp[i]当末尾数为nums[i]最长递增子序列
确认递推公式:如果前面的数比当前数小,dp[i] = max(dp[i], dp[j]+1)
初始化:dp[0] = 1, dp[i]=1
遍历顺序:从前向后遍历
打印dp数组:[1, 1, 1, 2, 2, 3, 4, 4]
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [1]*(len(nums))
result = 0
for i in range(len(nums)):
for j in range(0, i):
if nums[j]<nums[i]:
dp[i] = max(dp[i], dp[j]+1)
result = max(result, dp[i])
return result
674. 最长连续递增序列
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l
和 r
(l < r
)确定,如果对于每个 l <= i < r
,都有 nums[i] < nums[i + 1]
,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]]
就是连续递增子序列。
解题思路:
滑动窗口:
class Solution:
def findLengthOfLCIS(self, nums: List[int]) -> int:
slidingwindow
if len(nums) <= 1:
return 1
j= 0
count = 1
res = 0
for j in range(len(nums)-1):
if nums[j]<nums[j+1]:
count += 1
else:
count = 1
res = max(res, count)
return res
动态规划:
与上一题类似,不同之处在于本题是连续数组,当前一个值不小于后一个值时,后一个值的最长子序列为1.
确认dp数组含义:dp[i]当末尾数为nums[i]最长递增子序列
确认递推公式:如果前面的数比当前数小,dp[i] = dp[i-1]+1
初始化:dp[0] = 1, dp[i] = 1
遍历顺序:从前向后遍历
打印dp数组
class Solution:
def findLengthOfLCIS(self, nums: List[int]) -> int:
dp = [1]*(len(nums))
result = 1
for i in range(1, len(nums)):
# for j in range(0, i):
if nums[i-1]<nums[i]:
dp[i] = dp[i-1]+1
result = max(result, dp[i])
return result
718. 最长重复子数组
给两个整数数组 nums1
和 nums2
,返回 两个数组中 公共的 、长度最长的子数组的长度 。
解题思路:
确认dp数组含义:dp[i][j] nums1尾部为i-1index,nums2尾部为j-1index的数组中,最大重复子数组长度。
递推公式:当nums1[i-1], nums2[j-1]对应数字相等时dp[i][j] = dp[i-1][j-1]+1
初始化:dp[i][0] = 0, dp[0][j] = 0
遍历顺序:从前到后遍历
打印dp数组
class Solution:
def findLength(self, nums1: List[int], nums2: List[int]) -> int:
dp = [[0]*(len(nums2)+1) for _ in range(len(nums1)+1)]
res = 0
for i in range(1, len(nums1)+1):
for j in range(1, len(nums2)+1):
if nums1[i-1] == nums2[j-1]:
dp[i][j] = dp[i-1][j-1]+1
res = max(res, dp[i][j])
return res