农夫要修理牧场的一段栅栏,他测量了栅栏,发现需要N块木头,每块木头长度为整数Li个长度单位,于是他购买了一条很长的、能锯成N块的木头,即该木头的长度是Li的总和。
但是农夫自己没有锯子,请人锯木的酬金跟这段木头的长度成正比。为简单起见,不妨就设酬金等于所锯木头的长度。例如,要将长度为20的木头锯成长度为8、7和5的三段,第一次锯木头花费20,将木头锯成12和8;第二次锯木头花费12,将长度为12的木头锯成7和5,总花费为32。如果第一次将木头锯成15和5,则第二次锯木头花费15,总花费为35(大于32)。
请编写程序帮助农夫计算将木头锯成N块的最少花费。
输入格式:
输入首先给出正整数N(≤104),表示要将木头锯成N块。第二行给出N个正整数(≤50),表示每段木块的长度。
输出格式:
输出一个整数,即将木头锯成N块的最少花费。
输入样例:
8
4 5 1 2 1 3 1 1
输出样例:
49
代码长度限制 16 KB
时间限制 400 ms
内存限制 64 MB
解题思路:
每次分割(头结点,左右儿子)
最小(带权路径长度WPL最小的二叉树)
哈夫曼树
关于哈夫曼树的建树,把要入树的元素从小到大排序(用priority_queue),每次去最小的前两个相加,把和再放入优先队列中,参与下一个计算
因为本题只涉及求带权路径长度最小的值,所以不用建立具体的树,只需要存一下每次相加的和就可以
参考代码:
#include<stdio.h>
#include<stdlib.h>
typedef int ElemType;
typedef struct HuffmanTreeNode {
ElemType data; //哈夫曼树中节点的权值
struct HuffmanTreeNode *left;
struct HuffmanTreeNode *right;
} HuffmanTreeNode, *HuffmanTree;
HuffmanTree createHuffmanTree(ElemType arr[], int N) {
HuffmanTree treeArr[N];
HuffmanTree tree, pRoot = NULL;
for (int i = 0; i < N; i++) { //初始化结构体指针数组,数组中每一个元素为一个结构体指针类型
tree = (HuffmanTree) malloc(sizeof(HuffmanTreeNode));
tree->data = arr[i];
tree->left = tree->right = NULL;
treeArr[i] = tree;
}
for (int i = 1; i < N; i++) { //进行 n-1 次循环建立哈夫曼树
//k1为当前数组中第一个非空树的索引,k2为第二个非空树的索引
int k1 = -1, k2 = 0;
for (int j = 0; j < N; j++) {
if (treeArr[j] != NULL && k1 == -1) {
k1 = j;
continue;
}
if (treeArr[j] != NULL) {
k2 = j;
break;
}
}
//循环遍历当前数组,找出最小值索引k1,和次小值索引k2
for (int j = k2; j < N; j++) {
if (treeArr[j] != NULL) {
if (treeArr[j]->data < treeArr[k1]->data) {//最小
k2 = k1;
k1 = j;
} else if (treeArr[j]->data < treeArr[k2]->data) {//次小
k2 = j;
}
}
}
//由最小权值树和次最小权值树建立一棵新树,pRoot指向树根结点
pRoot = (HuffmanTree) malloc(sizeof(HuffmanTreeNode));
pRoot->data = treeArr[k1]->data + treeArr[k2]->data;
pRoot->left = treeArr[k1];
pRoot->right = treeArr[k2];
treeArr[k1] = pRoot; //将新生成的数加入到数组中k1的位置
treeArr[k2] = NULL; //k2位置为空
}
return pRoot;
}
ElemType calculateWeightLength(HuffmanTree ptrTree, int len) {
if (ptrTree == NULL) { //空树返回0
return 0;
} else {
if (ptrTree->left == NULL && ptrTree->right == NULL) { //访问到叶子节点
return ptrTree->data * len;
} else {
return calculateWeightLength(ptrTree->left, len + 1) + calculateWeightLength(ptrTree->right, len + 1); //向下递归计算
}
}
}
int main() {
ElemType arr[10001];
int i = 0, N;
scanf("%d", &N);
while (i < N)
scanf("%d", &arr[i++]);
HuffmanTree pRoot = createHuffmanTree(arr, N); //返回指向哈夫曼树根节点的指针
printf("%d", calculateWeightLength(pRoot, 0));
return 0;
}