3. 无重复字符的最长子串(java)

题目:

给定一个字符串 s ,请你找出其中不含有重复字符的 最长 

子串

 的长度。

示例 1:

输入: s = "abcabcbb"
输出: 3 
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。

示例 2:

输入: s = "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。

示例 3:

输入: s = "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
     请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。

提示:

  • 0 <= s.length <= 5 * 104
  • s 由英文字母、数字、符号和空格组成

思路解析:

首先我们可以使用滑动窗口来考虑这个问题,我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,

在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;

在枚举结束后,我们找到的最长的子串的长度即为答案。

正确代码:

class Solution {
    public int lengthOfLongestSubstring(String s) {
       int n=s.length();
        // 哈希集合,记录每个字符是否出现过
     Set<Character> occ=new HashSet<Character>();

     int r=0,ans=0;
     for(int i=0;i<n;i++){
        if(i!=0){
            // 左指针向右移动一格,移除一个字符
            occ.remove(s.charAt(i-1));
        }
        //如果set中不含有这个字符,r++
        while(r<n && !occ.contains(s.charAt(r))){
             // 不断地移动右指针
            occ.add(s.charAt(r));
            r++;
        }
        //左右指针的差值
        ans=Math.max(ans,r-i);
     }
     return ans;
    }
}

代码解析:

首先我们定义出字符串的长度,其次我们可以利用一个哈希集合SET,来记录每个字符是否出现过。

然后定义出右指针r,以及最后的最大长度ans。

然后就可以开始循环遍历字符串了,这里的i其实就是左指针。如果左指针不在0的坐标上,那么我们就要将窗口往前移动一格,那么就需要将上一个字符从set移除出去。

循环中还嵌套着一层while循环,当右指针还没到达字符串长度并且set集合中不含有这个字符的时候,右指针继续向后移动,直到右指针到达底部或者指针所指字符set集合中已经存在了,那么就退出while循环。

这个时候计算左右指针的差值,就是他们的长度。然后通过max函数可以计算出最大值赋值给ans。

退出while循环后,左指针++,开始下一轮for循环,开始计算从左指针所指字符开始的最大不重复子串,因为左指针++了,所以set集合要remove左指针上一个字符。这里就有了为什么循环开始要有一个if语句,如果左指针为0的时候,就不需要remove。

字符串遍历完成,返回ans。

无重复字符长子问题指的是,给定一个字符`s`,找出其中不含有重复字符的长子的长度,该问题可使用滑动窗口和哈希表解决,这一组合能解决一系列字符问题,如小覆盖子、找到字符中所有字母异位词、长重复子等[^3]。 ### 算法思路 使用滑动窗口结合哈希表的方法。定义一个哈希表来存储每个字符在字符中出现的位置,同时定义双指针`left`和`right`,其中`left`指向滑动窗口的左端,而`right`则向右移动。在移动`right`指针的同时不断更新哈希表,以及记录当前无重复字符长子的长度。当遇到重复字符时,利用哈希表中记录的信息来更新左指针,并重新计算当前的长子[^1]。 ### 代码实现 #### Python实现 ```python def lengthOfLongestSubstring(s): # 哈希表,记录字符及其近一次出现的位置 char_index_map = {} # 滑动窗口的左边界 left = 0 # 长无重复子的长度 max_length = 0 for right in range(len(s)): current_char = s[right] # 如果当前字符已经存在于窗口中,更新左边界 if current_char in char_index_map: left = max(left, char_index_map[current_char] + 1) # 更新哈希表,记录当前字符的位置 char_index_map[current_char] = right # 计算当前窗口的长度,并更新大长度 max_length = max(max_length, right - left + 1) return max_length ``` #### Java实现 ```java import java.util.HashMap; import java.util.Map; class Solution { public int lengthOfLongestSubstring(String s) { int n = s.length(); // 字符长度 int maxLength = 0; // 长无重复子的长度 Map<Character, Integer> map = new HashMap<>(); // 哈希表,记录字符及其近一次出现的位置 // 滑动窗口的左右边界分别为 i 和 j for (int j = 0, i = 0; j < n; j++) { char currentChar = s.charAt(j); // 当前字符 // 如果当前字符已经存在于窗口中,更新左边界 i if (map.containsKey(currentChar)) { i = Math.max(map.get(currentChar) + 1, i); } // 更新哈希表,记录当前字符的位置 map.put(currentChar, j); // 计算当前窗口的长度,并更新大长度 maxLength = Math.max(maxLength, j - i + 1); } return maxLength; // 返回长无重复子的长度 } } ``` #### C++实现 ```cpp #include <iostream> #include <string> #include <unordered_map> #include <algorithm> class Solution { public: int lengthOfLongestSubstring(std::string s) { int n = s.size(); int maxLength = 0; std::unordered_map<char, int> charIndexMap; for (int right = 0, left = 0; right < n; right++) { char currentChar = s[right]; if (charIndexMap.find(currentChar) != charIndexMap.end()) { left = std::max(left, charIndexMap[currentChar] + 1); } charIndexMap[currentChar] = right; maxLength = std::max(maxLength, right - left + 1); } return maxLength; } }; ``` ### 复杂度分析 - **时间复杂度**:$O(n)$,其中`n`是字符的长度。因为只需要遍历一次字符。 - **空间复杂度**:$O(min(n, m))$,其中`m`是字符集的大小(ASCII 字符集大小为 128),哈希表多存储所有唯一字符 [^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值