Acwing后缀表达式(贪心)

8 篇文章 0 订阅
7 篇文章 0 订阅

https://www.acwing.com/problem/content/description/1249/

最一开始我就想错了,思维误区就是加号和减号是一定的,我就排了个序,加上大的,尽可能地减去负数。然而并非如此。正负号可以转换。当m!=0时,符号可以取1~n+m个。

比如a1-a2+a3+a4,可以增负号,a1-(a2+a3+a4);也可以增加正号,a1+a2-a3-a4,a1-(a3-a4-a2)那么我们就可以减去所有的负数,加上所有的正数。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 2e5+10;
int a[N];
int main()
{
    int n,m; cin>>n>>m;//+ -
    int k=n+m+1;
    for(int i=0;i<n+m+1;i++) cin>>a[i];
    
    LL res=0;
    if(!m) for(int i=0;i<k;i++) res+=a[i];
    else
    {
        sort(a,a+k);
        res=a[k-1]-a[0];
        for(int i=1;i<k-1;i++) res+=abs(a[i]);
    }
    cout<<res<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值