大数据从入门到实战 - MapReduce基础实战

什么是MapReduce

MapReduce是一种可用于数据处理的编程模型,我们现在设想一个场景,你接到一个任务,任务是:挖掘分析我国气象中心近年来的数据日志,该数据日志大小有3T,让你分析计算出每一年的最高气温,如果你现在只有一台计算机,如何处理呢?我想你应该会读取这些数据,并且将读取到的数据与目前的最大气温值进行比较。比较完所有的数据之后就可以得出最高气温了。不过以我们的经验都知道要处理这么多数据肯定是非常耗时的。

如果我现在给你三台机器,你会如何处理呢?看到下图你应该想到了:最好的处理方式是将这些数据切分成三块,然后分别计算处理这些数据(Map),处理完毕之后发送到一台机器上进行合并(merge),再计算合并之后的数据,归纳(reduce)并输出。

这就是一个比较完整的MapReduce的过程了。

 

如何使用MapReduce进行运算

我们通过一个示例,来体验Map/Reduce的使用。

我们从一个问题入手:目前我们想统计两个文本文件中,每个单词出现的次数。

首先我们在当前目录下创建两个文件:

创建file01输入内容:

 
  1. Hello World Bye World

创建file02输入内容:

 
  1. Hello Hadoop Goodbye Hadoop

将文件上传到HDFS/usr/input/目录下:

不要忘了启动DFSstart-dfs.sh

然后创建文件夹并上传:

 

在右侧代码区域编写,文件WordCount.java,添加如下内容:

public class WordCount {  
//Mapper类  
/*LongWritable表示每一行起始偏移量  
第一个Text是用来接受文件中的内容,  
第二个Text是用来输出给Reduce类的key,  
IntWritable是用来输出给Reduce类的value*/  
 public static class TokenizerMapper   
       extends Mapper<LongWritable, Text, Text, IntWritable>{  
    private final static IntWritable one = new IntWritable(1);  
    private Text word = new Text();  
    public void map(LongWritable key, Text value, Context context  
                    ) throws IOException, InterruptedException {  
      StringTokenizer itr = new StringTokenizer(value.toString());  
      while (itr.hasMoreTokens()) {  
        word.set(itr.nextToken());  
        context.write(word, one);  
      }  
    }  
  }  
  public static class IntSumReducer   
       extends Reducer<Text,IntWritable,Text,IntWritable> {  
    private IntWritable result = new IntWritable();  
    public v
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值