[蓝桥杯 2013 省 B] 翻硬币

[蓝桥杯 2013 省 B] 翻硬币

题目背景

小明正在玩一个“翻硬币”的游戏。

题目描述

桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零),比如可能情形是 **oo***oooo,如果同时翻转左边的两个硬币,则变为 oooo***oooo。现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢?

输入格式

两行等长字符串,分别表示初始状态和要达到的目标状态,每行长度小于 1000 1000 1000

数据保证一定存在至少一种方案可以从初始状态和要达到的目标状态。

输出格式

一个整数,表示最小操作步数。

样例 #1

样例输入 #1

**********
o****o****

样例输出 #1

5

样例 #2

样例输入 #2

*o**o***o***
*o***o**o***

样例输出 #2

1

提示

source:蓝桥杯 2013 省 B 组 H 题

思路分析

对于原来硬币的状态,如果和目标的第一个硬币状态相反,那么就一定要翻转它。

**********
o****o****
对于这组案例,由于第一个硬币状态是 * , 和目标状态 o 相反,那么我们必须要反转它, 既然反转了它,
那么它后面这个 * 也要进行反转

反转第一个后: oo********
然后就简单了,我们先不看第一个 o ,把第二个 o 当成我们第一个, 和目标状态 * 不一致, 那么重复
上面的步骤,反转它和它后面的 *

反转第二个后:o*o*******

下面就是按照以上的过程循环递推,就能得出答案了,这里题目给的测试点都是有解的。

demo

#include <iostream>
#include <cstring>
using namespace std;

string a, b;
int step;

void trun(int i)
{
    if(a[i] == '*') a[i] = 'o';
    else if(a[i] == 'o') a[i] = '*';
    
    if(a[i + 1] == '*') a[i + 1] = 'o';
    else if(a[i + 1] == 'o') a[i + 1] = '*';
    return ;
}
int main()
{
    cin>>a>>b;
    
    for(int i = 0; i < a.size(); i++)
    {
        if(a[i] != b[i]) trun(i), step++;
    }
    cout<<step;
    return 0;
}
### 关于2023年10月C++蓝桥杯竞赛中的硬币问题 对于2023年10月举行的C++蓝桥杯竞赛中涉及的硬币问题,该类题目通常考察的是算法设计能力和逻辑思维能力。这类问题往往可以通过模拟操作或者动态规划的方法来解决。 #### 动态规划方法求解硬币问题 当面对硬币这样的组合优化问题时,可以采用动态规划的思想来进行解答[^1]。具体来说: - 定义状态`dp[i][j]`表示前i枚硬币中有j枚正面朝上的最小转次数。 - 初始条件设置为没有任何硬币被考虑的情况即`dp[0][0]=0`;其他情况初始化为无穷大因为此时不存在合法方案。 - 对于每一个新的硬币加入进来之后更新转移方程如下: - 如果当前这枚新加入的硬币保持不变,则有 `dp[i][j] = min(dp[i][j], dp[i-1][j])` - 若将其面则会带来额外的一次变换成本因此还需要计算 `dp[i][j] = min(dp[i][j], dp[i-1][abs(j-(a[i]==1))]+(a[i]!=b[i]))` 其中数组`a[]`代表初始状态下各位置上硬币的状态(正反),而`b[]`则是目标最终要达到的状态配置向量[^2]。 ```cpp #include <iostream> #include <vector> using namespace std; const int INF = 987654321; int n, m; //n: number of coins, m: target count of heads up vector<int> a, b; vector<vector<int>> dp; void init() { cin >> n >> m; a.resize(n); b.resize(n); for (auto& x : a) cin >> x; fill(b.begin(), b.end(), 1); // Assuming all should be head-up as the goal. } void solve() { dp.assign(n + 1, vector<int>(m + 1, INF)); dp[0][0] = 0; for(int i=1;i<=n;++i){ for(int j=0;j<=min(i,m);++j){ if(a[i-1]==b[i-1]){ if(j>=1) dp[i][j] = min(dp[i][j], dp[i-1][j-1]); dp[i][j] = min(dp[i][j], dp[i-1][j]+1); }else{ dp[i][j] = min(dp[i][j], dp[i-1][j]); if(j>=1) dp[i][j] = min(dp[i][j], dp[i-1][j-1]+1); } } } cout << ((dp[n][m]<INF)?to_string(dp[n][m]):"-1")<< endl; } ``` 上述代码实现了基于动态规划策略下的硬币解决方案,并能够处理给定数量的不同起始与结束状态之间的转换过程[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不会画饼鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值