数学建模-判断数据是否服从正态分布

在统计分析中,当样本量超过1000时,使用QQ图进行正态性检验是常见的做法。皮尔逊相关系数通常要求数据正态分布,但斯皮尔曼相关系数则不需要这一假设,提供了一种更灵活的相关性度量方法。文章探讨了这两种方法在处理非正态分布数据时的应用和选择。
摘要由CSDN通过智能技术生成

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 大样本用qq图 >1000

  • 皮尔逊相关系数需要正态性检验,利用上面三种方法其中一种

  • 斯皮尔曼相关系数不用正态性检验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蒋的学习笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值