数学建模更新8(正态分布均值假设检验)

一.概述

假设检验的步骤可以归纳
如下:
(1) 写出原假设和备择假设;
(2) 在原假设成立的条件下,构造一个统计量,该统计量服从某一分布;
(3) 用已知的样本数据带入统计量的公式,得到一个检验值;
(4) 给定置信水平来得到一个接受域的区间,看检验值是否落在接受域中,或者用检验值和区间的临界值进行比较,来判断是否接受原假设(或者计算该检验值对应于其分布的p值,并将p值和指定的显著性水平比较从而来确定是否接受原假设)。

二.规律

在这里插入图片描述

三.例题

1.标准正态分布

在这里插入图片描述
在这里插入图片描述
H H H0: u = 0.5 u=0.5 u=0.5, H H H1: u = / 0.5 u=/0.5 u=/0.5
构造统计量
在这里插入图片描述
在这里插入图片描述
然后求利用新的统计量的值
在这里插入图片描述
根据置信区间判断是否拒绝原假设
在这里插入图片描述
从p值的结果重新判断
在这里插入图片描述

2.单侧检验

在这里插入图片描述
在这里插入图片描述

3. t t t检验例题

在这里插入图片描述
在这里插入图片描述

三.了解一些单个检验

1. z z z检验

在这里插入图片描述
Z检验法的核心是总体服从正态分布,且该正态分布的均值未知,需要我们检验,但方差已知。

2. t t t检验

在这里插入图片描述

四.两个正态总体均值差的检验

1.概述

在这里插入图片描述

2.例题

在这里插入图片描述
在这里插入图片描述

五.逐对比较法

1.概述

有时为了比较两种产品、两种仪器 、两种方法等的差异,我们常在相同的条件下做对比试验,得到一批成对的观察值,然后分析观察数据作出推断。这种方法常称为逐对比较法。这个方法在数学建模中用的也比较多

2.例题1

在这里插入图片描述
问:能否认为这两台仪器的测量结果有显著的差异
a=0.01
在这里插入图片描述

3.例题2

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六.卡方分布的概率密度函数

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值