正态分布均值假设检验
一.概述
假设检验的步骤可以归纳
如下:
(1) 写出原假设和备择假设;
(2) 在原假设成立的条件下,构造一个统计量,该统计量服从某一分布;
(3) 用已知的样本数据带入统计量的公式,得到一个检验值;
(4) 给定置信水平来得到一个接受域的区间,看检验值是否落在接受域中,或者用检验值和区间的临界值进行比较,来判断是否接受原假设(或者计算该检验值对应于其分布的p值,并将p值和指定的显著性水平比较从而来确定是否接受原假设)。
二.规律
三.例题
1.标准正态分布
H
H
H0:
u
=
0.5
u=0.5
u=0.5,
H
H
H1:
u
=
/
0.5
u=/0.5
u=/0.5
构造统计量
然后求利用新的统计量的值
根据置信区间判断是否拒绝原假设
从p值的结果重新判断
2.单侧检验
3. t t t检验例题
三.了解一些单个检验
1. z z z检验
Z检验法的核心是总体服从正态分布,且该正态分布的均值未知,需要我们检验,但方差已知。
2. t t t检验
四.两个正态总体均值差的检验
1.概述
2.例题
五.逐对比较法
1.概述
有时为了比较两种产品、两种仪器 、两种方法等的差异,我们常在相同的条件下做对比试验,得到一批成对的观察值,然后分析观察数据作出推断。这种方法常称为逐对比较法。这个方法在数学建模中用的也比较多
2.例题1
问:能否认为这两台仪器的测量结果有显著的差异
a=0.01
3.例题2