函数的定义
还记得 Python 里面"万物皆对象"么?Python 把函数也当成对象,可以从另一个函数中返回出来而去构建高阶函数,比如: 参数是函数、返回值是函数。
- 函数以关键词开头,后接函数名和圆括号()。
def
- 函数执行的代码以冒号起始,并且缩进。
- return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回。
None
def 函数名 (参数
): "函数文档字符串"
函数套件
返回 [表达式]
1.函数参数
Python 的函数具有非常灵活多样的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。从简到繁的参数形态如下:
- 位置参数
- 默认参数 (默认参数)
- 可变参数
- 关键字参数
- 命名关键字参数
- 参数组合
- Python 允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。
2.可变参数
顾名思义,可变参数就是传入的参数个数是可变的,可以是 0, 1, 2 到任意个,是不定长的参数。
def functionname(arg1, arg2=v, *args):
"函数文档字符串"
functionsuite
return [expression]
*args
- 可变参数,可以是从零个到任意个,自动组装成元组。- 加了星号(*)的变量名会存放所有未命名的变量参数。
3.关键字参数
def functionname(arg1, arg2=v, args, *kw):
"函数文档字符串"
functionsuite
return [expression]
**kw
- 关键字参数,可以是从零个到任意个,自动组装成字典。
「可变参数」和「关键字参数」的同异总结如下:
- 可变参数允许传入零个到任意个参数,它们在函数调用时自动组装为一个元组 (tuple)。
- 关键字参数允许传入零个到任意个参数,它们在函数内部自动组装为一个字典 (dict)。
4.命名关键字参数
def functionname(arg1, arg2=v, args, *, nkw, *
kw): "函数文档字符串"
函数套件
返回 [表达式]
*, nkw
- 命名关键字参数,用户想要输入的关键字参数,定义方式是在nkw 前面加个分隔符 。*
- 如果要限制关键字参数的名字,就可以用「命名关键字参数」
- 使用命名关键字参数时,要特别注意不能缺少参数名。
5.参数组合
在 Python 中定义函数,可以用位置参数、默认参数、可变参数、命名关键字参数和关键字参数,这 5 种参数中的 4 个都可以一起使用,但是注意,参数定义的顺序必须是:
- 位置参数、默认参数、可变参数和关键字参数。
- 位置参数、默认参数、命名关键字参数和关键字参数。
要注意定义可变参数和关键字参数的语法:
*args
是可变参数, 接收的是一个args
tuple
**kw
是关键字参数, 接收的是一个kw
dict
命名关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。定义命名关键字参数不要忘了写分隔符 ,否则定义的是位置参数。*
警告:虽然可以组合多达 5 种参数,但不要同时使用太多的组合,否则函数很难懂。
函数的返回值
变量作用域
- Python 中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的。
- 定义在函数内部的变量拥有局部作用域,该变量称为局部变量。
- 定义在函数外部的变量拥有全局作用域,该变量称为全局变量。
- 局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。
- 当内部作用域想修改外部作用域的变量时,就要用到和关键字了。
global
nonlocal
内嵌函数
闭包
- 是函数式编程的一个重要的语法结构,是一种特殊的内嵌函数。
- 如果在一个内部函数里对外层非全局作用域的变量进行引用,那么内部函数就被认为是闭包。
- 通过闭包可以访问外层非全局作用域的变量,这个作用域称为 闭包作用域。
递归
- 如果一个函数在内部调用自身本身,这个函数就是递归函数。
Lambda表达式
匿名函数的定义
在 Python 里有两类函数:
- 第一类:用 关键词定义的正规函数
def
- 第二类:用 关键词定义的匿名函数
lambda
Python 使用 关键词来创建匿名函数,而非关键词,它没有函数名,其语法结构如下:lambda
def
lambda argument_list: expression
lambda
- 定义匿名函数的关键词。argument_list
- 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样。:
- 冒号,在函数参数和表达式中间要加个冒号。expression
- 只是一个表达式,输入函数参数,输出一些值。
注意:
expression
中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值。- 匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数。
匿名函数的应用
函数式编程 是指代码中每一块都是不可变的,都由纯函数的形式组成。这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用。
匿名函数 常常应用于函数式编程的高阶函数 (high-order function)中,主要有两种形式:
- 参数是函数 (filter, map)
- 返回值是函数 (closure)
如,在 和函数中的应用:filter
map
filter(function, iterable)
过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 来转换。list()
map(function, *iterables)
根据提供的函数对指定序列做映射。
类与对象
对象 = 属性 + 方法
对象是类的实例。换句话说,类主要定义对象的结构,然后我们以类为模板创建对象。类不但包含方法定义,而且还包含所有实例共享的数据。
- 封装:信息隐蔽技术
我们可以使用关键字 定义 Python 类,关键字后面紧跟类的名称、分号和类的实现。class
SELF是什么
Python 的 相当于 C++ 的 指针。self
this
类的方法与普通的函数只有一个特别的区别 —— 它们必须有一个额外的第一个参数名称(对应于该实例,即该对象本身),按照惯例它的名称是 。在调用方法时,我们无需明确提供与参数 相对应的参数。self
self
Python 的魔法方法
据说,Python 的对象天生拥有一些神奇的方法,它们是面向对象的 Python 的一切...
它们是可以给你的类增加魔力的特殊方法...
如果你的对象实现了这些方法中的某一个,那么这个方法就会在特殊的情况下被 Python 所调用,而这一切都是自动发生的...
类有一个名为的魔法方法,该方法在类实例化时会自动调用。__init__(self[, param1, param2...])
公有和私有
在 Python 中定义私有变量只需要在变量名或函数名前加上“__”两个下划线,那么这个函数或变量就会为私有的了。
继承
Python 同样支持类的继承,派生类的定义如下所示:
class DerivedClassName(BaseClassName):
statement-1
.
.
.
statement-N
BaseClassName
(基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用:
class DerivedClassName(modname.BaseClassName):
statement-1
.
.
.
statement-N
Python 虽然支持多继承的形式,但我们一般不使用多继承,因为容易引起混乱。
class DerivedClassName(Base1, Base2, Base3):
statement-1
.
.
.
statement-N
需要注意圆括号中父类的顺序,若是父类中有相同的方法名,而在子类使用时未指定,Python 从左至右搜索,即方法在子类中未找到时,从左到右查找父类中是否包含方法。
组合
类、类对象和实例对象
类对象:创建一个类,其实也是一个对象也在内存开辟了一块空间,称为类对象,类对象只有一个。
class A(object):
pass
实例对象:就是通过实例化类创建的对象,称为实例对象,实例对象可以有多个。
类属性:类里面方法外面定义的变量称为类属性。类属性所属于类对象并且多个实例对象之间共享同一个类属性,说白了就是类属性所有的通过该类实例化的对象都能共享。
实例属性:实例属性和具体的某个实例对象有关系,并且一个实例对象和另外一个实例对象是不共享属性的,说白了实例属性只能在自己的对象里面使用,其他的对象不能直接使用,因为是谁调用,它的值就属于该对象。self
什么是绑定?
Python 严格要求方法需要有实例才能被调用,这种限制其实就是 Python 所谓的绑定概念。
Python 对象的数据属性通常存储在名为的字典中,我们可以直接访问,或利用 Python 的内置函数获取。.__ dict__
__dict__
vars()
.__ dict__
一些相关的内置函数(BIF)
issubclass(class, classinfo)
方法用于判断参数 class 是否是类型参数 classinfo 的子类。- 一个类被认为是其自身的子类。
classinfo
可以是类对象的元组,只要class是其中任何一个候选类的子类,则返回。True
isinstance(object, classinfo)
方法用于判断一个对象是否是一个已知的类型,类似。type()
type()
不会认为子类是一种父类类型,不考虑继承关系。isinstance()
会认为子类是一种父类类型,考虑继承关系。- 如果第一个参数不是对象,则永远返回。
False
- 如果第二个参数不是类或者由类对象组成的元组,会抛出一个异常。
TypeError
class property([fget[, fset[, fdel[, doc]]]])
用于在新式类中返回属性值。fget
-- 获取属性值的函数fset
-- 设置属性值的函数fdel
-- 删除属性值函数doc
-- 属性描述信息
魔法方法
魔法方法总是被双下划线包围,例如。__init__
魔法方法是面向对象的 Python 的一切,如果你不知道魔法方法,说明你还没能意识到面向对象的 Python 的强大。
魔法方法的“魔力”体现在它们总能够在适当的时候被自动调用。
魔法方法的第一个参数应为(类方法) 或者(实例方法)。cls
self
cls
:代表一个类的名称self
:代表一个实例对象的名称
基本的魔法方法
__init__(self[, ...])
构造器,当一个实例被创建的时候调用的初始化方法__new__(cls[, ...])
在一个对象实例化的时候所调用的第一个方法,在调用初始化前,先调用。__init__
__new__
__new__
至少要有一个参数,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给。cls
__init__
__new__
对当前类进行了实例化,并将实例返回,传给的。但是,执行了,并不一定会进入,只有返回了,当前类的实例,当前类的才会进入。__init__
self
__new__
__init__
__new__
cls
__init__
- 若没有正确返回当前类的实例,那是不会被调用的,即使是父类的实例也不行,将没有被调用。
__new__
cls
__init__
__init__
__new__
方法主要是当你继承一些不可变的 class 时(比如), 提供给你一个自定义这些类的实例化过程的途径。int, str, tuple
__del__(self)
析构器,当一个对象将要被系统回收之时调用的方法。-
Python 采用自动引用计数(ARC)方式来回收对象所占用的空间,当程序中有一个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 1;当程序中有两个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 2,依此类推,如果一个对象的引用计数变成了 0,则说明程序中不再有变量引用该对象,表明程序不再需要该对象,因此 Python 就会回收该对象。
大部分时候,Python 的 ARC 都能准确、高效地回收系统中的每个对象。但如果系统中出现循环引用的情况,比如对象 a 持有一个实例变量引用对象 b,而对象 b 又持有一个实例变量引用对象 a,此时两个对象的引用计数都是 1,而实际上程序已经不再有变量引用它们,系统应该回收它们,此时 Python 的垃圾回收器就可能没那么快,要等专门的循环垃圾回收器(Cyclic Garbage Collector)来检测并回收这种引用循环。
-
__str__(self)
:- 当你打印一个对象的时候,触发
__str__
- 当你使用格式化的时候,触发
%s
__str__
str
强转数据类型的时候,触发__str__
- 当你打印一个对象的时候,触发
-
__repr__(self)
:repr
是的备胎str
- 有的时候执行,没有实现的时候,执行
__str__
__str__
__str__
__repr__
repr(obj)
内置函数对应的结果是的返回值__repr__
- 当你使用格式化的时候 触发
%r
__repr__
__str__(self)
的返回结果可读性强。也就是说, 的意义是得到便于人们阅读的信息,就像下面的 '2019-10-11' 一样。__str__
__repr__(self)
的返回结果应更准确。怎么说, 存在的目的在于调试,便于开发者使用。__repr__
算术运算符
类型工厂函数,指的是“不通过类而是通过函数来创建对象”。
__add__(self, other)
定义加法的行为:+
__sub__(self, other)
定义减法的行为:-
__mul__(self, other)
定义乘法的行为:*
__truediv__(self, other)
定义真除法的行为:/
__floordiv__(self, other)
定义整数除法的行为://
__mod__(self, other)
定义取模算法的行为:%
__divmod__(self, other)
定义当被 调用时的行为divmod()
divmod(a, b)
把除数和余数运算结果结合起来,返回一个包含商和余数的元组。(a // b, a % b)
_pow__(self, other[, module])
定义当被 调用或 运算时的行为power()
**
__lshift__(self, other)
定义按位左移位的行为:<<
__rshift__(self, other)
定义按位右移位的行为:>>
__and__(self, other)
定义按位与操作的行为:&
__xor__(self, other)
定义按位异或操作的行为:^
__or__(self, other)
定义按位或操作的行为:|
反算术运算符
反运算魔方方法,与算术运算符保持一一对应,不同之处就是反运算的魔法方法多了一个"r"。当文件左操作不支持相应的操作时被调用。
__radd__(self, other)
定义加法的行为:+
__rsub__(self, other)
定义减法的行为:-
__rmul__(self, other)
定义乘法的行为:*
__rtruediv__(self, other)
定义真除法的行为:/
__rfloordiv__(self, other)
定义整数除法的行为://
__rmod__(self, other)
定义取模算法的行为:%
__rdivmod__(self, other)
定义当被 divmod() 调用时的行为__rpow__(self, other[, module])
定义当被 power() 调用或 运算时的行为**
__rlshift__(self, other)
定义按位左移位的行为:<<
__rrshift__(self, other)
定义按位右移位的行为:>>
__rand__(self, other)
定义按位与操作的行为:&
__rxor__(self, other)
定义按位异或操作的行为:^
__ror__(self, other)
定义按位或操作的行为:|
a + b
这里加数是,被加数是,因此是主动,反运算就是如果对象的方法没有实现或者不支持相应的操作,那么 Python 就会调用的方法。a
b
a
a
__add__()
b
__radd__()
增量赋值运算符
__iadd__(self, other)
定义赋值加法的行为:+=
__isub__(self, other)
定义赋值减法的行为:-=
__imul__(self, other)
定义赋值乘法的行为:*=
__itruediv__(self, other)
定义赋值真除法的行为:/=
__ifloordiv__(self, other)
定义赋值整数除法的行为://=
__imod__(self, other)
定义赋值取模算法的行为:%=
__ipow__(self, other[, modulo])
定义赋值幂运算的行为:**=
__ilshift__(self, other)
定义赋值按位左移位的行为:<<=
__irshift__(self, other)
定义赋值按位右移位的行为:>>=
__iand__(self, other)
定义赋值按位与操作的行为:&=
__ixor__(self, other)
定义赋值按位异或操作的行为:^=
__ior__(self, other)
定义赋值按位或操作的行为:|=
一元运算符
__neg__(self)
定义正号的行为:+x
__pos__(self)
定义负号的行为:-x
__abs__(self)
定义当被调用时的行为abs()
__invert__(self)
定义按位求反的行为:~x
属性访问
__getattr__(self, name)
: 定义当用户试图获取一个不存在的属性时的行为。__getattribute__(self, name)
:定义当该类的属性被访问时的行为(先调用该方法,查看是否存在该属性,若不存在,接着去调用)。__getattr__
__setattr__(self, name, value)
:定义当一个属性被设置时的行为。__delattr__(self, name)
:定义当一个属性被删除时的行为。
描述符
描述符就是将某种特殊类型的类的实例指派给另一个类的属性。
__get__(self, instance, owner)
用于访问属性,它返回属性的值。__set__(self, instance, value)
将在属性分配操作中调用,不返回任何内容。__del__(self, instance)
控制删除操作,不返回任何内容。
定制序列
协议(Protocols)与其它编程语言中的接口很相似,它规定你哪些方法必须要定义。然而,在 Python 中的协议就显得不那么正式。事实上,在 Python 中,协议更像是一种指南。
容器类型的协议
- 如果说你希望定制的容器是不可变的话,你只需要定义和方法。
__len__()
__getitem__()
- 如果你希望定制的容器是可变的话,除了和方法,你还需要定义和两个方法。
__len__()
__getitem__()
__setitem__()
__delitem__()
__len__(self)
定义当被调用时的行为(返回容器中元素的个数)。len()
__getitem__(self, key)
定义获取容器中元素的行为,相当于。self[key]
__setitem__(self, key, value)
定义设置容器中指定元素的行为,相当于。self[key] = value
__delitem__(self, key)
定义删除容器中指定元素的行为,相当于。del self[key]
迭代器
- 迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。
- 迭代器是一个可以记住遍历的位置的对象。
- 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。
- 迭代器只能往前不会后退。
- 字符串,列表或元组对象都可用于创建迭代器:
- 迭代器有两个基本的方法: 和 。
iter()
next()
iter(object)
函数用来生成迭代器。next(iterator[, default])
返回迭代器的下一个项目。iterator
-- 可迭代对象default
-- 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 异常。StopIteration
-
把一个类作为一个迭代器使用需要在类中实现两个魔法方法 与 。
__iter__()
__next__()
__iter__(self)
定义当迭代容器中的元素的行为,返回一个特殊的迭代器对象, 这个迭代器对象实现了 方法并通过 异常标识迭代的完成。__next__()
StopIteration
__next__()
返回下一个迭代器对象。StopIteration
异常用于标识迭代的完成,防止出现无限循环的情况,在 方法中我们可以设置在完成指定循环次数后触发 异常来结束迭代。__next__()
StopIteration
4.10 生成器
- 在 Python 中,使用了 的函数被称为生成器(generator)。
yield
- 跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
- 在调用生成器运行的过程中,每次遇到 时函数会暂停并保存当前所有的运行信息,返回 的值, 并在下一次执行 方法时从当前位置继续运行。
yield
yield
next()
- 调用一个生成器函数,返回的是一个迭代器对象。