高等数学(预备知识之不等式)

一. 高频出现的变换公式

a=a+1-11-a=1+(-a)
a = 1 1 a a=\frac{1}{\frac{1}{a}} a=a11 a = 3 a 3 a=\frac{3a}{3} a=33a
a b = a ∗ 1 b \frac{a}{b}=a*\frac{1}{b} ba=ab1 1 − 1 a = 1 + 1 − a 1-\frac{1}{a}=1+\frac{1}{-a} 1a1=1+a1
a b = a c b c \frac{a}{b}=\frac{\frac{a}{c}}{\frac{b}{c}} ba=cbca b a − d c = b c − a d a c \frac{b}{a}-\frac{d}{c}=\frac{bc-ad}{ac} abcd=acbcad

二.重要公式

a2- b2=(a+b)(a-b)a2 ± \pm ± 2ab +b2=(a ± \pm ± b)2
a3+b3=(a+b)(a2- ab+b2)a3- b3=(a - b)(a2+ab+b2)
(a+b)3= a3+3a2b+3ab2+b3(a - b)3= a3- 3a2b+3ab2- b3
(xy)的平方为(x2y)

三.因式分解

我们直接上例题
例题一: x2-x - 56=0
在这里插入图片描述
例题二: 3x2+8x - 3=0
\quad \quad 3 \quad \quad -1
\quad \quad 1 \quad \quad 3
(3x-1)(x+3)=0

四.不等式

4.1不等式的常用性质

性质一: 不等式两边分别乘负号,不等式要变号
-5<3 -----> 5>-3
-5<a<3 -----> -3<-a<5

性质二: a>b c>d —> a+c > b+d 对于abcd都是正数的情况下, 乘和乘方同样适用

(常考类型题一):
判断两个数或方程大小
相减法: A-B 结果大于0, 则A>B
相除法: A/B 结果大于1, 则A>B

a>b —> ac2 > bc2 (错误的)
注意: 要考虑c=0的情况

(常考类型题二): 求取值范围

  1. 已知 2<a<3, -2<b<-1, 求2a+b的取值范围
    2*2<2a<2 *3 —> 4<2a<6 —> 4+(-2)<2a+b<6+(-1) —> 2<2a+b<5

  2. 设2<a<3, -2<b<-1,则2a-b的范围是()
    -2<b<-1 —> 1<-b<2
    2* 2<2a<2*3 —> 4<2a<6 —> 4+1<2a-b<2+6 —> 5<2a-b<8
    注意: 只有同方向不等式才可以相加, 不等式中是不可以相减的,如果要相减得换种思考方法,那就是两边都乘-1

为什么不等式不能相减?
因为大的加大的一定大于两个较小的之和
但是大的减大的就不一定大于小的减小的了

(常考类型题三): 证明题
已知a>b>0, c<d<0, e<0,
求证: e a − c \frac{e}{a-c} ace> e b − d \frac{e}{b-d} bde
解:
∵ \because e<0
∴ \therefore 1 a − c \frac{1}{a-c} ac1< 1 b − d \frac{1}{b-d} bd1 (不等式两边同乘一个负数,不等号要改变)
整理得 b-d < a-c
∵ \because a>b, c<d
∴ \therefore b-d < a-c 成立
∴ \therefore 1 a − c \frac{1}{a-c} ac1< 1 b − d \frac{1}{b-d} bd1
∴ \therefore e a − c \frac{e}{a-c} ace> e b − d \frac{e}{b-d} bde

(证明过程有待改善,请大佬评论区指教哈)

4.2基本不等式

a2+b2 ≥ \geq 2ab
(满足: 一正二定三相等)

演化出来的公式

a+b ≥ \geq 2 a b \sqrt{ab} ab

ab ≤ \leq ( a + b 2 \frac{a+b}{2} 2a+b)2

a 2 + b 2 2 \frac{a^2+b^2}{2} 2a2+b2 ≥ \geq ( a + b 2 \frac{a+b}{2} 2a+b)2
(怎么来的)
在这里插入图片描述

4.2.1推导过程

(a-b)2
a2-2ab+b2 ≥ \geq 0
a2+b2 ≥ \geq 2ab

4.2.2基本不等式的应用

一正(就是A B 都必须是正数):

  1. 已知x<0, 求函数y=x+ 1 x \frac{1}{x} x1 的最大值
    解: y= -(-x)- 1 − x \frac{1}{-x} x1 —> y= -[(-x)+ 1 − x \frac{1}{-x} x1] 把负号提出来
    根据 a+b ≥ \geq 2 a b \sqrt{ab} ab
    ∴ \therefore -x+ 1 − x \frac{1}{-x} x1 ≥ \geq 2
    ∴ \therefore -(-x)- 1 − x \frac{1}{-x} x1 ≤ \leq -2 负号还回去
    当x= 1 x \frac{1}{x} x1时,取得最值
    解得 x=1或x=-1
    ∵ \because x<0
    ∴ \therefore x=1(舍去)
    当且仅当x=-1时, y取得最大值为-2

二定(就是1.在A+B为定值时,便可以知道AB的最大值;2.在AB为定值时,就可以知道A+B的最小值):

  1. 已知a>0, b>0, ab=36, 求a+b的最小值
    解: 已知 a+b ≥ \geq 2 a b \sqrt{ab} ab
    ∴ \therefore a+b ≥ \geq 2*6
    ∴ \therefore a+b ≥ \geq 12
    即 a+b的最小值为12

  2. 已知a>0, b>0, a+b=18, 求ab的最大值
    解: 已知 ab ≤ \leq ( a + b 2 \frac{a+b}{2} 2a+b)2
    ∴ \therefore ab ≤ \leq 92
    ∴ \therefore ab ≤ \leq 81
    即 ab的最大值为81

  3. 已知 x>3, 函数y=x+ 1 x − 3 \frac{1}{x-3} x31, 当x为何值时, 函数有最值, 并求其最值。
    解: y=(x-3)+ 1 x − 3 \frac{1}{x-3} x31+3, 根据a+b ≥ \geq 2 a b \sqrt{ab} ab
    ∴ \therefore (x-3)+ 1 x − 3 \frac{1}{x-3} x31 ≥ \geq 2 1 \sqrt{1} 1
    ∴ \therefore (x-3)+ 1 x − 3 \frac{1}{x-3} x31+3 ≥ \geq 2 1 \sqrt{1} 1 +3
    ∴ \therefore (x-3)+ 1 x − 3 \frac{1}{x-3} x31+3 ≥ \geq 5
    当(x-3)= 1 x − 3 \frac{1}{x-3} x31, y取得最值
    解得 x=4或x=2(舍去)
    ∵ \because x>3
    ∴ \therefore 当且仅当x=4时, y取得最小值为5

三相等(就是说在A和B相等时,等号成立,即在A=B时,A+B=2√AB)

  1. 若0<x< 1 2 \frac{1}{2} 21, 求函数y=x(1-2x)的最大值
    y=2x(1-2x)* 1 2 \frac{1}{2} 21
    根据 a+b ≥ \geq 2 a b \sqrt{ab} ab
    2x+(1-2x) ≥ \geq 2 2 x ( 1 − 2 x ) \sqrt{2x(1-2x)} 2x(12x)
    1 ≥ \geq 2 2 x ( 1 − 2 x ) \sqrt{2x(1-2x)} 2x(12x)
    2x(1-2x) ≤ \leq 1 4 \frac{1}{4} 41
    2x(1-2x)* 1 2 \frac{1}{2} 21 ≤ \leq 1 8 \frac{1}{8} 81
    当2x=1-2x时, y取得最值
    解得 x= 1 4 \frac{1}{4} 41
    当 x= 1 4 \frac{1}{4} 41时, y取得最大值为 1 8 \frac{1}{8} 81

4.3二次函数与一元二次方程、不等式

我们把只含有一个未知数, 并且未知数的最高次数是2的不等式,称为一元二次不等式
ax2+bx+c >0 (a ≠ \neq = 0) 其中a,b,c均为常数

a>0,图形开口向上, a<0,图形开口向下
对称轴: - b 2 a \frac{b}{2a} 2ab
在这里插入图片描述
常考类型
一.求解集(大于取两边, 小于取中间)

  1. 不等式 -6x2-x+2 ≤ \leq 0的解集是:
    两边同时乘-1得:
    6x2+x-2 ≥ \geq 0
    (2x-1)(3x+2) ≥ \geq 0
    解得:当x为 1 2 \frac{1}{2} 21或x为- 2 3 \frac{2}{3} 32时不等式为0
    所以不等式的解集为(- ∞ \infty ,- 2 3 \frac{2}{3} 32] ∪ \cup [ 1 2 \frac{1}{2} 21, + ∞ \infty )

二.已知解集求范围

  1. 若不等式ax2+8ax+21 < 0 的解集是{x | -7< x < -1}, 求a的值
    解:
    当a=0时, 21<0, 不合理
    当a>0时, 将x=-7和 x= -1分别代入不等式得
    49a-56a+21=0
    a-8a+21=0
    解得 a=3

  2. 若不等式(a-2)x2+2(a-2)x-4<0的解集为R,求实数a的取值范围
    当a-2=0时, -4<0, x ∈ \in R
    当a-2>0时, 开口向上,肯定有y大于0的,不符合
    当a-2<0时, 开口向下,并且与x轴没有交点
    Δ \Delta Δ< 0, 即4(a-2)2-4(a-2)(-4)<0
    解得x= ± \pm ± 2
    ∵ \because a-2<0
    ∴ \therefore a的取值范围是-2<a<2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值