高等数学(预备知识之对数函数)

一.对数的概念

如果ax=N (a>0, 且a≠1),(x>0) 那么数x叫做以a为底N的对数, 记作x= log ⁡ a N \log a^N logaN, 其中a叫做对数的底数, N叫做真数

\quad

1.1两个特殊对数式

log ⁡ a 1 \log a^1 loga1 = 0
log ⁡ a a \log a^a logaa = 1

1.2自然对数与常用对数

通常, 把以10为底的对数称为常用对数, 记作 lg ⁡ N \lg N lgN
把以e为底的对数称作自然对数, 记作 ln ⁡ N \ln N lnN, (e是无理数, 约为2.71828…)

例题1: 求下列各式中的x的值
(1) log ⁡ 6 4 X \log 64^X log64X = - 2 3 \frac{2}{3} 32 \quad x= 1 16 \frac{1}{16} 161

(2) log ⁡ x 8 \log x^8 logx8 = 6
x6=8
x6=(x2)3=23
x= ± \pm ± 2 \sqrt{2} 2
由于x>0, 且x≠1
∴ \therefore x= 2 \sqrt{2} 2

(3) lg ⁡ 100 \lg 100 lg100 = x \quad x=2

(4)- ln ⁡ e 2 \ln e^2 lne2 = x \quad x= -2

\quad

二.对数的运算性质


(2) log ⁡ a M \log a^M logaM + log ⁡ a N \log a^N logaN = log ⁡ a M N \log_{a}^{MN} logaMN

(3) log ⁡ a M \log a^M logaM - log ⁡ a N \log a^N logaN = log ⁡ a M N \log_{a}^{\frac{M}{N}} logaNM

(4) log ⁡ a M n \log_{a}^{M^n} logaMn = n log ⁡ a M \log_{a}^{M} logaM
注意: 底数要相同

(5) log ⁡ a b \log a^b logab = log ⁡ c b log ⁡ c a \frac{\log c^b}{\log c^a} logcalogcb (c>0,且c≠1)(换底公式)

(6) log ⁡ a b \log_{a}{b} logab . log ⁡ b a \log_{b}{a} logba = lg ⁡ b lg ⁡ a \frac{\lg_{}{b}}{\lg_{}{a}} lgalgb . lg ⁡ a lg ⁡ b \frac{\lg_{}{a}}{\lg_{}{b}} lgblga = 1

(7) 1 log ⁡ b a \frac{1}{\log_{b}{a}} logba1 = log ⁡ a b \log_{a}{b} logab

\quad
例题2: 求下列各式的值
(1) log ⁡ 8 4 \log 8^4 log84+ log ⁡ 8 2 \log 8^2 log82 \quad =1
(2) log ⁡ 5 10 \log_{5}^{10} log510+ log ⁡ 5 2 \log_{5}^{2} log52 \quad =1

(3) log ⁡ 2 ( 4 7 ∗ 2 5 ) \log_{2}^{(4^7*2^5)} log2(4725) =19

\quad
例题3:
lg ⁡ 5 2 \lg 5^2 lg52+ 2 3 \frac{2}{3} 32 lg ⁡ 8 \lg 8 lg8+ lg ⁡ 5 \lg 5 lg5 * lg ⁡ 20 \lg 20 lg20+( lg ⁡ 2 \lg 2 lg2)2

原式= lg ⁡ 25 \lg 25 lg25+ lg ⁡ 4 \lg 4 lg4+ lg ⁡ 5 \lg 5 lg5*(2 lg ⁡ 2 \lg 2 lg2+ lg ⁡ 5 \lg 5 lg5)+ lg ⁡ 2 \lg 2 lg2 * lg ⁡ 2 \lg 2 lg2
=> 2+2 lg ⁡ 5 \lg 5 lg5 * lg ⁡ 2 \lg 2 lg2+ lg ⁡ 5 \lg 5 lg5 * lg ⁡ 5 \lg 5 lg5+ lg ⁡ 2 \lg 2 lg2 * lg ⁡ 2 \lg 2 lg2
=>2+ lg ⁡ 5 \lg 5 lg5 * lg ⁡ 2 \lg 2 lg2+ lg ⁡ 5 \lg 5 lg5 * lg ⁡ 5 \lg 5 lg5+ lg ⁡ 5 \lg 5 lg5 * lg ⁡ 2 \lg 2 lg2+ lg ⁡ 2 \lg 2 lg2 * lg ⁡ 2 \lg 2 lg2
=>2+ lg ⁡ 5 \lg 5 lg5 * ( lg ⁡ 2 \lg 2 lg2+ lg ⁡ 5 \lg 5 lg5) + lg ⁡ 5 \lg 5 lg5 * lg ⁡ 2 \lg 2 lg2+ lg ⁡ 2 \lg 2 lg2 * lg ⁡ 2 \lg 2 lg2
=>2+ lg ⁡ 5 \lg 5 lg5 + lg ⁡ 2 \lg 2 lg2( lg ⁡ 2 \lg 2 lg2+ lg ⁡ 5 \lg 5 lg5)
=>2+ lg ⁡ 2 \lg 2 lg2+ lg ⁡ 5 \lg 5 lg5
=>2+1
=>3

\quad
例题4:
(1) log ⁡ 8 9 \log_{8}{9} log89. log ⁡ 27 32 \log_{27}{32} log2732

=> log ⁡ 2 3 3 2 \log_{2^3}{3^2} log2332 . log ⁡ 3 3 2 5 \log_{3^3}{2^5} log3325

=> 2 3 \frac{2}{3} 32 log ⁡ 2 3 \log_{2}{3} log23 . 5 3 \frac{5}{3} 35 log ⁡ 3 2 \log_{3}{2} log32

=> 10 9 \frac{10}{9} 910 log ⁡ 2 3 \log_{2}{3} log23. log ⁡ 3 2 \log_{3}{2} log32

=> 10 9 \frac{10}{9} 910 . lg ⁡ 3 lg ⁡ 2 \frac{\lg_{}{3}}{\lg_{}{2}} lg2lg3 . lg ⁡ 2 lg ⁡ 3 \frac{\lg_{}{2}}{\lg_{}{3}} lg3lg2

=> 10 9 \frac{10}{9} 910

\quad
\quad
(2) ( log ⁡ 4 3 \log_{4}{3} log43+ log ⁡ 8 3 \log_{8}{3} log83) lg ⁡ 2 lg ⁡ 3 \frac{\lg_{}{2}}{\lg_{}{3}} lg3lg2

=>( log ⁡ 4 3 \log_{4}{3} log43+ log ⁡ 8 3 \log_{8}{3} log83) log ⁡ 3 2 \log_{3}{2} log32

=>( 1 2 \frac{1}{2} 21 log ⁡ 2 3 \log_{2}{3} log23+ 1 3 \frac{1}{3} 31 log ⁡ 2 3 \log_{2}{3} log23) log ⁡ 3 2 \log_{3}{2} log32

=> 1 2 \frac{1}{2} 21 log ⁡ 2 3 \log_{2}{3} log23 . log ⁡ 3 2 \log_{3}{2} log32 + 1 3 \frac{1}{3} 31 log ⁡ 2 3 \log_{2}{3} log23 . log ⁡ 3 2 \log_{3}{2} log32

=> 1 2 \frac{1}{2} 21 + 1 3 \frac{1}{3} 31

=> 5 6 \frac{5}{6} 65

\quad
\quad
例题5:
(1) 若3x = 4y = 36, 求 2 x \frac{2}{x} x2 + 1 y \frac{1}{y} y1的值
解:
依题意得: log ⁡ 3 36 \log_{3}{36} log336 = x, log ⁡ 4 36 = y \log_{4}{36 = y } log436=y
2 log ⁡ 3 6 \log_{3}{6} log36=x, log ⁡ 2 6 \log_{2}{6} log26=y
带入式子得
2 2 log ⁡ 3 6 \frac{2}{2\log_{3}{6}} 2log362+ 1 log ⁡ 2 6 \frac{1}{\log_{2}{6}} log261

=> 1 log ⁡ 3 6 \frac{1}{\log_{3}{6}} log361+ log ⁡ 6 2 \log_{6}{2} log62

=> log ⁡ 6 3 \log_{6}{3} log63+ log ⁡ 6 2 \log_{6}{2} log62
=>1

\quad
(2) 已知3x = 4y = 6a, 求证: 1 x \frac{1}{x} x1 + 1 2 y \frac{1}{2y} 2y1 = 1 a \frac{1}{a} a1
证明:
设:3x = 4y = 6a=n
∴ \therefore log ⁡ 3 n \log_{3}{n} log3n = x
log ⁡ 4 n \log_{4}{n} log4n= y
log ⁡ 6 n \log_{6}{n} log6n= a
带入式子得
1 log ⁡ 3 n \frac{1}{\log_{3}{n}} log3n1+ 1 2 log ⁡ 4 n \frac{1}{2\log_{4}{n}} 2log4n1 = 1 log ⁡ 6 n \frac{1}{\log_{6}{n}} log6n1

=> log ⁡ n 3 \log_{n}{3} logn3+ 1 2 log ⁡ n 4 \frac{1}{2}\log_{n}{4} 21logn4= log ⁡ n 6 \log_{n}{6} logn6

=> log ⁡ n 3 \log_{n}{3} logn3+ log ⁡ n 2 \log_{n}{2} logn2= log ⁡ n 6 \log_{n}{6} logn6
等式成立
∴ \therefore 1 x \frac{1}{x} x1 + 1 2 y \frac{1}{2y} 2y1 = 1 a \frac{1}{a} a1

\quad
\quad
例题6
(1): log ⁡ 15 3 \log_{15}{3} log153 - log ⁡ 6 2 \log_{6}{2} log62 + log ⁡ 15 5 \log_{15}{5} log155 - log ⁡ 6 3 \log_{6}{3} log63 = ____

log ⁡ 15 3 \log_{15}{3} log153 + log ⁡ 15 5 \log_{15}{5} log155 - log ⁡ 6 2 \log_{6}{2} log62 - log ⁡ 6 3 \log_{6}{3} log63
=> 1 - ( log ⁡ 6 2 \log_{6}{2} log62 + log ⁡ 6 3 \log_{6}{3} log63)
=> 1 - 1
=> 0
\quad
(2) 设10a=2, lg ⁡ 3 \lg_{}{3} lg3=b, 则 log ⁡ 2 6 \log_{2}{6} log26=_____

依题意得: lg ⁡ 2 \lg_{}{2} lg2=a, lg ⁡ 3 \lg_{}{3} lg3=b

log ⁡ 2 6 \log_{2}{6} log26 = lg ⁡ 6 lg ⁡ 2 \frac{\lg_{}{6}}{\lg_{}{2}} lg2lg6 = lg ⁡ 2 + lg ⁡ 3 lg ⁡ 2 \frac{\lg_{}{2}+\lg_{}{3}}{\lg_{}{2}} lg2lg2+lg3 = a + b a \frac{a+b}{a} aa+b

\quad
\quad

三.对数函数的概念

通常, 我们用x表示自变量, 用y表示函数
所以将对数函数写成 y= log ⁡ a x \log_{a}{x} logax (a>0,且a≠1)

例题7:
给出下列函数:
(1) y= log ⁡ 5 x \log_{5}{x} log5x+1
(2) y= log ⁡ a x 2 \log_{a}{x^2} logax2(a>0, 且a≠1)
(3) y= log ⁡ ( 3 − 1 ) x \log_{(\sqrt[]{3}-1)}{x} log(3 1)x
(4) y= 1 3 \frac{1}{3} 31 log ⁡ 3 x \log_{3}{x} log3x
(5) y= log ⁡ x 3 \log_{x}{\sqrt[]{3}} logx3 (x>0, 且x≠1) \quad \quad 底数不能为自变量
(6) y= log ⁡ 2 π x \log_{\frac{2}{π}}{x} logπ2x

其中是对数的是(3)(6)
\quad

例题8:

(1)若函数y= log ⁡ ( 2 a − 1 ) x \log_{(2a-1)}{x} log(2a1)x +(a2- 5a+4)是对数函数, 则a=____
依题意得: a2- 5a+4=0, 2a-1>0, 2a-1≠1
解得a=4

(2)若函数f(x)=(a2+a-5) log ⁡ a x \log_{a}{x} logax是对数函数, 则a=____
依题意得 a2+a-5=1, a>0, a≠1
解得a=2

(3)函数f(x)= log ⁡ 2 ( x − 1 ) \log_{2}{(x-1)} log2(x1)的定义域是______
(1,+ ∞ \infty )

\quad
例题9: 求下列函数的定义域

(1) f(x)= 1 2 − x \frac{1}{\sqrt[]{2-x}} 2x 1+ ln ⁡ x + 1 \ln_{}{x+1} lnx+1
依题意得: 2-x>0, x+1>0
解得x ∈ \in (-1,2)

\quad
(2) f(x)= log ⁡ ( 2 x − 1 ) ( − 4 x + 8 ) \log_{(2x-1)}{(-4x+8)} log(2x1)(4x+8)
依题意得: 2x-1>0, 2x-1≠1, -4x+8>0
解得x ∈ \in ( 1 2 \frac{1}{2} 21,1) ∪ \cup (1,2)

\quad
\quad

四.对数函数的图像与性质

在这里插入图片描述
例题10: 比较大小
log ⁡ 2 3.4 \log_{2}{3.4} log23.4 log ⁡ 2 8.5 \log_{2}{8.5} log28.5 \quad \quad <
log ⁡ 0.3 1.8 \log_{0.3}{1.8} log0.31.8 log ⁡ 0.3 2.7 \log_{0.3}{2.7} log0.32.7 \quad \quad >
log ⁡ a 5.1 \log_{a}{5.1} loga5.1 log ⁡ a 5.9 \log_{a}{5.9} loga5.9
当0<a<1时, >
当a>1时, \quad <

\quad

例题11:
已知 log ⁡ a 3 a − 1 \log_{a}{3a-1} loga3a1恒为正, 求a的取值范围
依题意得:
当0<a<1时, 0<3a-1<1 恒为正
当a>1时, 3a-1>1 恒为正
解得x ∈ \in ( 1 3 \frac{1}{3} 31, 2 3 \frac{2}{3} 32) ∪ \cup (1,+ ∞ \infty )

\quad
例题12:求下列函数的值域
(1) y= log ⁡ 2 ( x 2 + 4 ) \log_{2}{(x^2+4)} log2(x2+4)
解: x2+4>0
当x=0时,取得最小值
将x=0代入原式中解得y=2
∵ \because 函数底数大于1,为增函数
∴ \therefore 函数的值域为[2,+ ∞ \infty )

\quad
(2) y= log ⁡ 1 2 ( 3 + 2 x − x 2 ) \log_{\frac{1}{2}}{(3+2x-x^2)} log21(3+2xx2)
解: 3+2x-x2>0
解得顶点为(1,4)
将3+2x-x2=4带入原式得, y=-2
∵ \because 函数底数小于1,为减函数
∴ \therefore 函数的值域为[-2,+ ∞ \infty )

  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值