高等数学(预备知识之三角函数)

本文详细介绍了三角函数的基本概念,包括正弦、余弦、正切的定义和性质,以及象限角的符号规律。通过诱导公式和重要公式阐述了三角函数的变化规律,并通过多个例题展示了如何求解不同象限角的三角函数值。此外,还探讨了三角函数在平面直角坐标系中的应用,如角度的转换和三角比例关系。最后,文章通过解题展示了如何利用三角函数公式解决实际问题。
摘要由CSDN通过智能技术生成

一. 三角函数的定义

正弦函数, 余弦函数, 正切函数都是以角为自变量, 以单位圆上的坐标或坐标的比值为函数值的函数, 我们将他们称为三角函数
08
sin ⁡ \sin sin α \alpha α = y
cos ⁡ \cos cos α \alpha α = x
tan ⁡ \tan tan α \alpha α = y x \frac{y}{x} xy

正弦函数: y= sin ⁡ \sin sin x \quad x ∈ \in R
余弦函数: y= cos ⁡ \cos cos x \quad x ∈ \in R
正切函数: y= tan ⁡ \tan tan x \quad x ≠ \neq = π 2 \frac{π}{2} 2π+kπ (k ∈ \in Z) \quad 因为y= tan ⁡ \tan tan π 2 \frac{π}{2} 2π = 1 0 \frac{1}{0} 01

\quad
\quad
例题1: 5 π 3 \frac{5π}{3} 35π的正弦, 余弦, 正切值

sin ⁡ \sin sin 5 π 3 \frac{5π}{3} 35π = sin ⁡ \sin sin(- π 3 \frac{π}{3} 3π) = - 3 2 \frac{\sqrt[]{3}}{2} 23

cos ⁡ \cos cos 5 π 3 \frac{5π}{3} 35π = cos ⁡ \cos cos(- π 3 \frac{π}{3} 3π) = 1 2 \frac{1}{2} 21

tan ⁡ \tan tan 5 π 3 \frac{5π}{3} 35π = − 3 -\sqrt[]{3} 3

\quad
\quad

二.象限角的三角函数符号

09
所在象限为正, 由以下得来
10

三.诱导公式一

可以这样理解诱导公式就是把大角变小角

sin ⁡ \sin sin( α \alpha α+ 2kπ) = sin ⁡ \sin sin α \alpha α, k ∈ \in Z
cos ⁡ \cos cos( α \alpha α+ 2kπ) = cos ⁡ \cos cos α \alpha α, k ∈ \in Z
tan ⁡ \tan tan( α \alpha α+ 2kπ) = tan ⁡ \tan tan α \alpha α, k ∈ \in Z

\quad
\quad
例题2: sin ⁡ \sin sin(-315°) = _____
sin ⁡ \sin sin(-315°) = sin ⁡ \sin sin(-315°+2π) = sin ⁡ \sin sin(45°) = 2 2 \frac{\sqrt{2}}{2} 22

\quad
\quad
例题3: 在平面直角坐标系xoy中, 角 α \alpha α与角 β \beta β均以Ox为始边,他们的终边关于x轴对称, 若 sin ⁡ \sin sin α \alpha α = 1 5 \frac{1}{5} 51, 则 sin ⁡ \sin sin β \beta β = _____
答案: - 1 5 \frac{1}{5} 51

\quad
\quad
例题4: 已知 sin ⁡ \sin sin α \alpha α>0, cos ⁡ \cos cos α \alpha α<0, 则角 α \alpha α是在第几象限?
答案: 第二象限

\quad
\quad
例题5: 已知角 θ \theta θ终边上一点P(x,3)(x ≠ \neq = 0), 且 cos ⁡ \cos cos θ \theta θ= 10 10 \frac{\sqrt{10}}{10} 1010 x, 求 sin ⁡ \sin sin θ \theta θ______ 和 tan ⁡ \tan tan θ \theta θ______
解: cos ⁡ \cos cos θ \theta θ = x 9 + x 2 \frac{x}{\sqrt{9+x^2}} 9+x2 x = 10 10 \frac{\sqrt{10}}{10} 1010 x
解得: x= ± \pm ± 1
sin ⁡ \sin sin θ \theta θ = 3 10 10 \frac{3\sqrt{10}}{10} 10310
tan ⁡ \tan tan θ \theta θ = ± \pm ± 3

\quad
\quad

四. 三角函数重要公式

11
sin ⁡ \sin sinB = b a \frac{b}{a} ab

cos ⁡ \cos cosB = c a \frac{c}{a} ac

tan ⁡ \tan tanB = b c \frac{b}{c} cb

sin ⁡ 2 \sin^2 sin2B + cos ⁡ 2 \cos^2 cos2B = b 2 a 2 \frac{b^2}{a^2} a2b2+ c 2 a 2 \frac{c^2}{a^2} a2c2 = b 2 + c 2 a 2 \frac{b^2+c^2}{a^2} a2b2+c2 = 1

sin ⁡ B cos ⁡ B \frac{\sin B}{\cos B} cosBsinB = b a \frac{b}{a} ab / c a \frac{c}{a} ac = b c \frac{b}{c} cb = tan ⁡ \tan tanB

\quad
\quad
由此诞生两个重要公式

sin ⁡ 2 \sin^2 sin2 α \alpha α + cos ⁡ 2 \cos^2 cos2 α \alpha α = 1 tan ⁡ \tan tan α \alpha α = sin ⁡ α cos ⁡ α \frac{\sin \alpha}{\cos \alpha} cosαsinα \quad ( α \alpha α ≠ \neq = π 2 \frac{π}{2} 2π+kπ (k ∈ \in Z)

根据上面这两个公式推导 cos ⁡ α \cos \alpha cosα tan ⁡ α \tan \alpha tanα的关系式
sin ⁡ α \sin \alpha sinα = tan ⁡ α \tan \alpha tanα cos ⁡ \cos cos α \alpha α 代入 sin ⁡ 2 \sin^2 sin2 α \alpha α + cos ⁡ 2 \cos^2 cos2 α \alpha α = 1
tan ⁡ 2 \tan^2 tan2 α \alpha α cos ⁡ 2 \cos^2 cos2 α \alpha α + cos ⁡ 2 \cos^2 cos2 α \alpha α = 1
cos ⁡ 2 \cos^2 cos2 α \alpha α( tan ⁡ 2 \tan^2 tan2 α \alpha α+1) = 1

cos ⁡ 2 \cos^2 cos2 α \alpha α = 1 tan ⁡ 2 α + 1 \frac{1}{\tan^2 \alpha+1} tan2α+11

\quad
\quad
\quad
例题6: sin ⁡ \sin sin α \alpha α = 1 3 \frac{1}{3} 31, 并且 α \alpha α是第二象限角, 求 cos ⁡ \cos cos α \alpha α, tan ⁡ \tan tan α \alpha α的值
解: sin ⁡ 2 \sin^2 sin2 α \alpha α + cos ⁡ 2 \cos^2 cos2 α \alpha α = 1
sin ⁡ \sin sin α \alpha α = 1 3 \frac{1}{3} 31代入得 1 9 \frac{1}{9} 91 + cos ⁡ 2 \cos^2 cos2 α \alpha α = 1

解得 cos ⁡ \cos cos α \alpha α = - 2 2 3 \frac{2\sqrt{2}}{3} 322
tan ⁡ \tan tan α \alpha α = - 2 4 \frac{\sqrt{2}}{4} 42

\quad
\quad
例题7: 已知 sin ⁡ \sin sin α \alpha α = - 3 5 \frac{3}{5} 53, 求 cos ⁡ \cos cos α \alpha α, tan ⁡ \tan tan α \alpha α的值
分析: 既然没有指明在第几象限, 而且 sin ⁡ \sin sin α \alpha α为负, 所以三四象限都要考虑
sin ⁡ 2 \sin^2 sin2 α \alpha α + cos ⁡ 2 \cos^2 cos2 α \alpha α = 1

α \alpha α在第三象限时
cos ⁡ \cos cos α \alpha α = - 4 5 \frac{4}{5} 54
tan ⁡ \tan tan α \alpha α = 3 4 \frac{3}{4} 43
α \alpha α在第四象限时
cos ⁡ \cos cos α \alpha α = 4 5 \frac{4}{5} 54
tan ⁡ \tan tan α \alpha α = - 3 4 \frac{3}{4} 43

\quad
\quad
例题8: 求证: cos ⁡ x 1 − sin ⁡ x \frac{\cos x}{1- \sin x} 1sinxcosx = 1 + sin ⁡ x cos ⁡ x \frac{1+\sin x}{\cos x} cosx1+sinx
证明: 对角相乘得
cos ⁡ 2 \cos^2 cos2 α \alpha α = (1- sin ⁡ x \sin x sinx)(1+ sin ⁡ x \sin x sinx)
cos ⁡ 2 \cos^2 cos2 α \alpha α = 12- sin ⁡ 2 x \sin^2 x sin2x
sin ⁡ 2 \sin^2 sin2 α \alpha α + cos ⁡ 2 \cos^2 cos2 α \alpha α = 1
∴ \therefore cos ⁡ x 1 − sin ⁡ x \frac{\cos x}{1- \sin x} 1sinxcosx = 1 + sin ⁡ x cos ⁡ x \frac{1+\sin x}{\cos x} cosx1+sinx

\quad
\quad
例题9: 如果 α \alpha α是第二象限的角, 则下列各式中成立的是

A. tan ⁡ \tan tan α \alpha α= - sin ⁡ a cos ⁡ a \frac{\sin a}{\cos a} cosasina \quad \quad 本来 cos ⁡ a \cos a cosa就为负, 不需要加负号

B. cos ⁡ \cos cos α \alpha α= - 1 − sin ⁡ 2 a \sqrt{1- \sin^2 a} 1sin2a

C. sin ⁡ \sin sin α \alpha α = - 1 − cos ⁡ 2 a \sqrt{1- \cos^2 a} 1cos2a \quad \quad \quad 应为正

D. tan ⁡ \tan tan α \alpha α = cos ⁡ a sin ⁡ a \frac{\cos a}{\sin a} sinacosa \quad \quad 反了

\quad
\quad
例题10: 已知 sin ⁡ \sin sin α \alpha α = 5 5 \frac{\sqrt{5}}{5} 55 , 则 sin ⁡ 4 a \sin^4 a sin4a - cos ⁡ 4 a \cos^4 a cos4a的值为____
sin ⁡ 2 \sin^2 sin2 α \alpha α + cos ⁡ 2 \cos^2 cos2 α \alpha α = 1
sin ⁡ 2 \sin^2 sin2 α \alpha α = 1 5 \frac{1}{5} 51
cos ⁡ 2 \cos^2 cos2 α \alpha α = 4 5 \frac{4}{5} 54
sin ⁡ 4 a \sin^4 a sin4a - cos ⁡ 4 a \cos^4 a cos4a = - 3 5 \frac{3}{5} 53

\quad
\quad
例题11: 已知 θ \theta θ ∈ \in (0, π), sin ⁡ θ \sin \theta sinθ + cos ⁡ θ \cos \theta cosθ = 3 − 1 2 \frac{\sqrt{3}-1}{2} 23 1, 求 tan ⁡ θ \tan \theta tanθ 的值
解:
两边平方得
sin ⁡ 2 \sin^2 sin2 θ \theta θ + cos ⁡ 2 \cos^2 cos2 θ \theta θ +2 cos ⁡ θ \cos \theta cosθ sin ⁡ θ \sin \theta sinθ = 2 − 3 2 \frac{2- \sqrt{3}}{2} 223

1 +2 cos ⁡ θ \cos \theta cosθ sin ⁡ θ \sin \theta sinθ = 2 − 3 2 \frac{2- \sqrt{3}}{2} 223

2 cos ⁡ θ \cos \theta cosθ sin ⁡ θ \sin \theta sinθ = - 3 2 \frac{\sqrt{3}}{2} 23

cos ⁡ θ \cos \theta cosθ sin ⁡ θ \sin \theta sinθ = - 3 4 \frac{\sqrt{3}}{4} 43 \quad \quad (除1)

cos ⁡ θ sin ⁡ θ 1 \frac{\cos \theta \sin \theta}{1} 1cosθsinθ = cos ⁡ θ sin ⁡ θ sin ⁡ 2 θ + cos ⁡ 2 θ \frac{\cos \theta \sin \theta}{\sin^2 \theta + \cos^2 \theta} sin2θ+cos2θcosθsinθ = tan ⁡ θ tan ⁡ 2 θ + 1 \frac{\tan \theta}{\tan^2 \theta+1} tan2θ+1tanθ = - 3 4 \frac{\sqrt{3}}{4} 43

解得 tan ⁡ θ \tan \theta tanθ = - 3 3 \frac{\sqrt{3}}{3} 33 tan ⁡ θ \tan \theta tanθ = - 3 \sqrt{3} 3

检验:
cos ⁡ 2 \cos^2 cos2 θ \theta θ = 1 tan ⁡ 2 θ + 1 \frac{1}{\tan^2 \theta+1} tan2θ+11

解得:
cos ⁡ 2 \cos^2 cos2 θ \theta θ = 1 4 \frac{1}{4} 41 3 4 \frac{3}{4} 43
sin ⁡ 2 \sin^2 sin2 θ \theta θ = 3 4 \frac{3}{4} 43 1 4 \frac{1}{4} 41

∵ \because θ \theta θ ∈ \in (0, π), sin ⁡ \sin sin θ \theta θ为正, cos ⁡ \cos cos θ \theta θ或正或负
sin ⁡ \sin sin θ \theta θ = 3 2 \frac{\sqrt{3}}{2} 23 1 2 \frac{1}{2} 21
cos ⁡ \cos cos θ \theta θ = ± \pm ± 1 2 \frac{1}{2} 21 ± \pm ± 3 2 \frac{\sqrt{3}}{2} 23

∵ \because sin ⁡ θ \sin \theta sinθ + cos ⁡ θ \cos \theta cosθ = 3 − 1 2 \frac{\sqrt{3}-1}{2} 23 1
∴ \therefore 只取 sin ⁡ \sin sin θ \theta θ = 3 2 \frac{\sqrt{3}}{2} 23 , cos ⁡ \cos cos θ \theta θ = - 1 2 \frac{1}{2} 21
∴ \therefore tan ⁡ θ \tan \theta tanθ = - 3 \sqrt{3} 3

\quad
\quad
例题12: tan ⁡ α \tan \alpha tanα = 2 求 cos ⁡ α − 5 sin ⁡ α 3 cos ⁡ α + sin ⁡ α \frac{\cos \alpha-5\sin\alpha}{3\cos \alpha+\sin \alpha} 3cosα+sinαcosα5sinα
上下除以 cos ⁡ α \cos \alpha cosα
1 − 5 tan ⁡ α 3 + tan ⁡ α \frac{1- 5\tan \alpha}{3+\tan \alpha} 3+tanα15tanα = - 9 5 \frac{9}{5} 59

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值