【摘 要】在传统的工业现场级网络中,存在大量具有不同时延需求的业务,如何满足不同业务的时延需求存在挑战。针对在工业场景中现场级网络应如何保障系统反馈控制实时性的问题,提出了一种基于模糊推理模型的优先级适配机制。该机制通过动态调整网络中数据流的优先级,以满足各类异构业务的传输需求,保证系统反馈控制的实时性;同时,为了使其能够与时间敏感网络的优先级结合,设计了离散量化输出模型,为实现确定性网络调度提供依据。最后通过仿真,验证了该机制的实时性与有效性。
【关键词】优先级适配机制;模糊神经网络;动态优先级;时间敏感网络
0 引言
工业物联网是实现智能制造的基础手段,它通过新一代信息通信技术与工业经济深度融合,实现生产现场物理信息系统的泛在连接,构建起覆盖全域要素的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,在第四次工业革命的背景下,工业物联网技术迅速发展[1]。现场级工业网络具有集成管理设备、实现设备通信和数据驱动决策等功能,在工业物联网中起着关键作用[2-5]。然而,现场级工业网络在异构数据流自适应分级与确定性传输方面仍面临挑战。对于大型流程工业,大量的工业设备产生的数据具有并发性,各设备之间数据交互冲突严重,可靠传输困难。同时,