移动目标轨迹预测方法研究综述

本文综述了移动目标轨迹预测方法,涵盖基于概率统计、神经网络、深度学习和混合模型的数据驱动方法,以及基于动力学模型和意图识别的行为驱动方法。轨迹预测在智能交通监管、异常行为检测和导航等领域具有关键作用。深度学习在提高预测精度方面表现出优势,但面临训练速度慢和实时性差的问题。行为驱动方法则通过动力学建模和意图识别实现高精度短期预测,但预测复杂性限制了其应用。未来研究方向包括宏观轨迹预测、混合模型、多源信息融合和实际应用场景的预测技术发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘  要】随着智能交通系统领域大量移动终端设备的涌现,理解并准确预测移动目标轨迹有助于降低交通事故发生的概率,提高基于位置服务的智能交通应用的质量和水平。主要从数据驱动和行为驱动的角度对移动目标轨迹预测方法进行综述,首先对概率统计、神经网络、深度学习和混合建模等数据驱动方法进行比较;其次对动力学建模和目标意图识别等行为驱动方法的基本概念及研究现状进行概述;然后分别对目标轨迹重建、目标异常行为识别和导航路径规划等轨迹预测应用进行简要叙述;最后讨论了移动目标轨迹预测存在的主要问题以及未来的发展方向。

【关键词】智能交通系统 ; 轨迹预测 ; 人工智能 ; 深度学习 ; 动力学模型

1.引言

移动目标轨迹预测是一个典型的涉及交通运输工程和智能科学与技术的多学科交叉研究问题,在智能交通监管、异常行为检测和无人航行器自主导航等领域具有重要的理论研究和实际应用价值。移动目标轨迹预测通过挖掘移动目标的历史位置信息和行为习惯,计算目标未来的位置信息和行为动态。根据移动目标轨迹在不同应用领域的表现形式(主要包括公路、航空、轨道、航运等),可将移动目标分为二维移动目标(如汽车、行人和船舶等)和三维移动目标(如飞行器)。本文主要从数据驱动和行为驱动两个方面综述移动目标轨迹预测方法的发展现状,移动目标轨迹预测方法的分类见表1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值